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Abstract 

This paper presents a seven-dimensional ordinary differential equation of mathematical model of zika virus 

between humans and mosquitoes population with non-linear forces of infection in form of saturated 

incidence rate. Vertical transmission is introduced into the model. These incidence rates produce antibodies 

in response to the presence of parasite-causing zika virus in both human and mosquito populations. The 

existence of region where the model is epidemiologically feasible is established (invariant set) and the 

positivity of the models is also established. The basic properties of the model are determined including the 

reproduction number of both cases,𝑅0 and 00 | qpR respectively .Stability analysis of the disease-free 

equilibrium is investigated via the threshold parameter (reproduction number
0 0|p qR  

) obtained using the 

next generation matrix technique. The special case model results shown that the disease-free equilibrium is 

locally asymptotical stable at threshold parameter less than unity and unstable at threshold parameter greater 

than unity. Under specific conditions on the model parameters, the global dynamics of the special case 

model around the equilibra are explored using Lyapunov functions. For a threshold parameter less than 

unity, the disease-free equilibrium is globally asymptotically stable. While the endemic equilibrium is 

shows to be globally asymptotically stable at threshold parameter greater than unity. Numerical simulations 

are carried out to confirm the analytic results and explore the possible behavior of the formulated model. 

The result shows that, horizontal and vertical transmission contributes a higher percentage of infected 

individuals in the population than only horizontal transmission. 

 

INTRODUCTION 

 

In 1946, scientists identified a new virus from monkey in the zika forest of Uganda – named as 

zikavirus. In 1948 the virus is then discovered from the mosquito Aedes, caught in the zika forest 

tree. The first human case of Zika virus was reported in Nigria in 1954, Macnamara (1954). In 

2007, Zika virus moved out of Africa and Asia causing an outbreak in Yap Island in the Federated 

States of Micronesia, Duffy et.al (2009). An estimated 73% of Yap residents were infected with 

Zika virus. This was followed by a large outbreak in French Polynesia in 2013-2014, Cao-Lormeau 

and Musso (2014). And then spreading to new Caledonia, the Cook Islands and Eastern Island, 

Musso et.al (2014). After a very long time of silence, the Zika virus infections became a new 

problem in medicine, Wiwantkit et.al (2015). According to Cao-Lormeau et.al (2014), in early 
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2015, Zika virus was detected in Brazil. Phylogenetic analyses of the virus isolated from patients 

placed the Brazilian strains in the Asian lineage which has been previously detected during the 

French Polynesian outbreak. Since the first detection of Zika virus in Brazil, the following 

countries have reported ongoing substantial transmission of Zika virus in South America: Bolivia, 

Brazil, Colombia, Ecuador, French Guyana, Guyana, Paraguay, Suriname and Venezuela, CDC(c) 

(2016). Several Central America countries are also affected including Costa Rica, El Salvador, 

Guatemala, Honduras, Nicaragua and Panama, CDC (d) (2016). As at 10 June 2016, a total of 55 

countries and territories have reported active zika virus transmission since the beginning of 2015, 

the majority (39, 71%) in the Americans. In the last month, two countries have reported cases of 

transmission of zika virus for the first time – Argentina and Indonesia.  The rapid expansion of 

Zika virus has led the World Health Organization (WHO) to declare it a public health emergence 

of international concern, WHO (2016). Due to a probable association between Zika virus infection 

and a congenital neurological disorder called Microcephaly, Bichara et.al (2016). The epidemic 

trajectory of this virus infection poses a significant concern for the nearly 15 million children born 

in the Americas each year. WHO also reported the association between Zika virus infection in 

pregnant women and congenital Microcephaly in their babies, CDC (2015).  Nearly 5000 cases of 

Microcephaly have been documented in areas experiencing Zika virus transmission and there is 

widespread concern that these numbers could grow rapidly as the virus sweeps across the 

Americas, Fauci and Morens (2016), Lucey and Gostin (2016). Further expansion to the 

geographic range of zika virus is anticipated in countries with active mosquito vectors, especially 

Aedes species. Zika virus (zikv) outbreak was initially recognized in Africa, Hayes (2009). The 

Zika virus problem now becomes the global public health issue. South America is currently most 

heavily hit with over 4200 suspected cases reported in Brazil alone, Agencia (2016) Outbreak 

cases in other pacific countries where also reported, Musso et.al (2015) and Roth et.al (2014). 

Specifically, zika virus transmission is basically vector-borne; however it can also be transmitted 

through sexual contact and blood transfusion process, Musso et.al (2015). In 2008, a US scientists 

conducting field work in Senegal fell ill with zika infection on his return home to Colorado he  

infected his wife which was the first documented case of sexual transmission of the Zika disease. 

The main vector for the zika virus is Aedes species of mosquito, which is also the vector for 

Chikungunya and Dengue virus, Musso et. al (2014). Zika virus is therefore likely to be capable 

of sustained transmission in other tropical area, Bogoch et.al (2016), as well as causing symptoms 

such as fever, rash, joint pain and red eyes (conjunctivitis) which normally last for 2-7 days, 

Zanluca (2015) and WHO (2016). Zika infection has also been linked to increased incidence of 

neurological sequelae, including Guillain – Barre Syndrome (GBS), Oechler et.al (2014) and 

Oechler et.al. (2015). 

Zika virus is the focus of an ongoing pandemic and public health emergency. Previous, limited to 

sporadic cases in Africa and Asia, the emergency of zika virus in Brazil in 2015, heralded rapid 

spread throughout the Americans. Severe manifestations have been described including Guillian – 

Barre Syndrome in adults and mcirocephaly in babies born to infected mothers. Neither an 

effective treatment nor a vaccine is available for zika, therefore, the public health response 
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primarily focuses on preventing infection, particularly in pregnant women. Despite growing 

knowledge about this virus, questions remain regarding the virus, vectors and reservoirs. These 

questions highlight the need for research to optimize surveillance, patient management and public 

health intervention in the current zika virus epidemic. Inyama et.al (2017), in their model they 

considered three populations namely, Humans, mosquitoes and monkeys where they showed how 

the zika can be transmitted from monkey to human. Duong et.al (2015) studied the evidence that 

Aedes species of mosquito transmit both Dengue fever and Zika virus. They modeled the three 

compartments namely susceptible, infectives and recovered (SIR model) to examine the dynamics 

of transmission of Zika virus to human. Musso et.al (2013) demonstrated the potential risk for 

transfusion – transmission zika virus infection. They highlighted the risk of transmission through 

transfusion and also made reference to the region and cases affected by blood transfusion. Foy 

et.al (2011) studied how zika virus can be transmitted through sexual intercourse. They also 

described a patient who was infected with zika virus in South Eastern Senegal in 2008.Oehler 

(2014) and Ochler (2015) studied that there is a link between zika virus and increased incidence 

of neurological squealed including, Guillian – Barre system. Schuler et.al (2015) also studied 

microcephaly in infants born to mothers who were infected with zika virus during pregnancy. 

Ebenezer and Kazeen (2016) studied the mathematical modeling of zika virus. They introduced 

optimal control strategies into the model, where the basic properties of the model without control 

strategies were determined including the reproduction number. They used pontryagin’s maximum 

principle to characterize the necessary conditions for optimal control of zika virus. The preventive 

and treatment strategy without spraying the mosquitoes showed a great reduction in infection in 

the infected mosquitoe population. The application of preventive treatment and insecticide showed 

the best way of reducing the spread of zika virus. Raul and Karl (2016), studied the spread of three 

diseases, namely Dengue, Chikungunya and zika. They were the first people to treat the 

mathematical model to describe the dynamics of transmissions of these three diseases. They 

presented two preliminary models that consist of the SEIR model for the human population and an 

SEI model for the vector to describe, first the single transmission dynamics of dengue, 

Chikungunya or zika, and second any possible co infection between two diseases in the same 

population. In order word they obtained an analytical solution of the system of 17 and 30 coupled 

differential equations for each model respectively and later obtained the Eigen-values by analyzing 

the Jacobin matrix in order to begin the development of a surveillance system to prevent the spread 

of these three diseases.  

The model presented in this work consist of four compartments in human population (that is, 

susceptible (S) Expose (E) Infectious (I), and recovered class (R) and also three compartment in 

mosquitoes, (that is, susceptible,(S) Expose (E) and Infectious (I), with inclusion of nonlinear 

forces of infection in form of saturated incidence rates in both the host (human) and vector 

(mosquitoes) populations. The disease induced death rate is also incorporated only in human 

population because disease may be fatal to some infectious host. We study the effects of these 
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inclusions on behavior of the formulated model. We also assume that the immunity is permanent 

and that recovered individuals do not revert to the susceptible class. 

In this study we have been able to extend the works of Ebenezer and Kazeem (2016). Their model 

did not consider exposed class, vertical transmission and saturated incidence rate which were 

considered in our own model. We finally analyzed horizontal and vertical transmissions of zika 

virus and used compartmental deterministic model to study the dynamic of the disease. We used 

lyapunov function theory to obtain the global stability of both the disease free equilibrium and the 

endemic equilibrium. 

MODEL FORMULATION 

Here, we shall look at how to formulate a deterministic differential equation model from a flow 

diagram of zika transmission schematic to get the differential equation of the model. The Jacobin 

matrix of the model is gotten by differentiating the equations of the model with respect to the seven 

classes of model that is SH(t), EH(t), IH(t), RH(t), Sm(t), Em(t) and Im(t) respectively and solving for 

an Eigen-value will determine if the disease free steady state is stable and we use Lyapunov theory 

to solve for global stability.  

Symbols, Parameters and Variable of the Model 

Hb  -Natural birth rate of human 
 

mb - Constant recruitment rate of susceptible mosquito population 

b - Biting rate of mosquitoes 

Hb - Probability that a bite by an infectious mosquito results in transmissions of disease to human  

mb – Probability that a bite by an infectious human results in transmissions of disease to mosquito 

HV – Proportion of antibody produced by human in response to the incidence of infection caused 

by mosquito 

mV – Proportion of antibody produced by mosquito in response to the incidence of infection caused 

by human 

He – Disease induced death 
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Hg –Recovering rate of infected human 

Hm - Natural death rate of human 

mm  - Natural death rate of mosquito 

Ha  - Progression rate of exposed human into infected human population  

ma  - Progression rate of exposed mosquito into infected mosquito population  

p  - The fraction of infected newborns from the expose class 

q  - The fraction of infected newborns from the infectious class 

HS  - Number of human susceptible to zika at time t 

HE  - Number of human exposed to zika infections at time t 

HI  - Number of infectious humans at time t 

HR  - Number of recovered human at time t 

mS  - Number of susceptible mosquitoes at time t 

mI  - Number of infectious mosquitoes at time  

Assumption of Model  

1. A fraction p and a fraction q of the offspring from the exposed and the infectious classes, 

respectively are born into the exposed class E 

2. The horizontal transmissions typically occur through the bites of infected mosquitoes. 

3. Humans may die as a result of the disease because the disease might be fatal to some human 

host. 
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4. Once a person has been infected and recovered he or she is likely to be protected from 

future infections 

5. The infected pregnant woman is able to transmit to her baby, either during early 

pregnancies or at the point of birth. 

6. Both human and mosquitoes may die as a result of natural causes. 

7. The natural birth rate of human population (bH) and mosquito population (bm) have  

constant densities as 1 

Model Flow Diagram 

H H H HPb E qb I+  

1

H H m
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b S I
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       m mSm             m mEm                 m mIm   

                                                       Fig 1. Model Flow Diagram 

 

Model Formulation   

The model presented by Ebenezer and Kazeem (2016) studied the mathematical modeling of zika 

virus with simple SIR model. Under their assumptions, individuals are born uninfected with zika. 

SH EH IH RH 

Sm Em Im 
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We now extend their model by considering the exposed class and vertical transmission (mother-

to-child transmission) with a saturated incident rate. The total population sizes for human host and 

mosquito population are donated by 𝑁𝐻(t) and 𝑁𝑚(t), respectively. The human population 𝑁𝐻(t) is 

divided into the epidemiological subclasses: Susceptible, Exposed, Infections, and permanent 

immune denoted by𝑆𝐻,𝐸𝐻, 𝐼𝐻,𝑎𝑛𝑑𝑅𝐻 respectively. Thus, 𝑁𝐻(t)=𝑆𝐻(𝑡) + 𝐸𝐻(𝑡) + 𝐼𝐻(𝑡) + 𝑅𝐻(t). 

The mosquito vector population 𝑁𝑚(t) has the subclasses denoted by 𝑆𝑚(𝑡), 𝐸𝑚(𝑡),   𝑎𝑛𝑑𝐼𝑚(𝑡)for 

the susceptible, exposed and infected subclasses, respectively. Thus, 𝑁𝑚(t)=𝑆𝑚(𝑡)  + 𝐸𝑚(𝑡)   +

   𝐼𝑚(𝑡). The immune class in mosquito population does not exist since mosquitoes once infected 

never recover from infection that is their infection period ends with their death. 

Complete interaction and transfer diagram of both human and mosquito population is showed in 

Fig 1. The compartmental deterministic mathematical model can be represented analytically by 

the following the non linear system of seven ordinary differential equation 
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With initial conditions 

 
(0) 0, (0) 0, (0) 0, (0) 0, (0) 0, (0) 0, (0) 0H H H H m m mS E I R S E I³ ³ ³ ³ ³ ³ ³

                    
(2.2) 

Special Case Model 
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After formulation of both Horizontal and vertical transmission of zika virus, it is important to gain 

insight into the dynamic of Horizontal transmission (mosquito transmission).The special case 

model is obtained by assuming that zika virus is not vertically transmitted, that is 0 qp  which 

reduces the equation of (2.1) to the following. 

 

1

2

3

1

1

(2.3)

1

1
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H H H
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H
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

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
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


  
 





  
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Where    HHHHH GG   21 , and  mmG  3  

Here 𝑏𝐻 is the natural birth rate of human, Ha
 is the rate at which expose human move to the 

infections class and human are recovered at the rate   Hg
,  H  is the natural mortality rate of 

human also H ,is the disease related death rate. Similarly bm is the constant recruitment rate of  

susceptible mosquitoes population by birth, m  is the rate at which exposed mosquitoes move to 

infections class and the mosquitoes leave the population through natural death rate m  .In a 
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standard SEIR compartment model, the vertical transmission can be incorporated by assuming that 

a fraction of the offspring  of  infected hosts (both E and I) are infected either during early 

pregnancy or at the point of birth. The term 
(1) ( )H H mb S I t  , a bilinear incidence used by Lashari 

et.al (2012), refers to the rate at which the susceptible human SH(t) gets infected by infectious 

mosquitoes. In this work, we use a saturated incidence of the form
( ) I ( )

1 (t)

H H m

H m

b S t t

V I

b

+
 used by Olaniyi 

and Obabiyi (2013). Where 
1

1+𝑉𝐻𝐼𝑚(𝑡)
 denotes a saturating feature that inhibits the force of infection 

from infectious mosquitoes to susceptible humans in order other words, it produces antibodies at 

 0,1HV  in response to the presence of infectious Aedes mosquitoes. 

Similarly,𝑏𝛽𝑚(𝑡)𝑆𝑚(𝑡)𝐼𝐻(𝑡) refers to the rate at which the susceptible mosquitoes 𝑆𝑚(t) are 

infected by infectious  human 𝐼𝐻(t).Since mosquitoes have DNA like humans, Noutcha et.al 

(2011).They also develop antibodies against the zika virus .Thus, we use a saturated force of 

infection of the form
𝑏𝛽𝑚(𝑡)𝑆𝑚(𝑡)𝐼𝐻(𝑡)

1+𝑉𝑚𝐼𝐻(𝑡)
, where 𝑉𝑚 ∈ [0,1]  is the rate at which antibodies are produced 

against the zika  infection  caused by infectious humans. 

MODEL ANALYSIS 

Invariant Property         

Here, we provide the following results which guarantee that the zika virus model governed by 

system (2.1) is epidemiologically and mathematically well-posed in a feasible region Ω given by: 

Ω = ΩH × Ωm ⊂ R+
4 × R+

3
 

Where 

                                                              ΩH = {(SH,EH,IH,RH) ∈  R+
4 : ≤

bH

µH
} 

And 

                                                              Ωm = {(Sm,Em,Im) ∈  R+
3 : ≤

bm

µm
}. 

 

Theorem 1: There exists a domain Ω in which the solution set {𝑆𝐻, 𝐸𝐻, 𝐼𝐻 , 𝑅𝐻, 𝑆𝑚, 𝐸𝑚, 𝐼𝑚} is 

contained and bounded 

 Proof: Given the solution set {𝑆𝐻, 𝐸𝐻 , 𝐼𝐻, 𝑅𝐻, 𝑆𝑚, 𝐸𝑚, 𝐼𝑚} with positive initial condition (2.2) we 

let 

𝑁𝐻 = 𝑆𝐻 + 𝐸𝐻 + 𝐼𝐻 + 𝑅𝐻   Human population 
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𝑁𝑚 = 𝑆𝑚 + 𝐸𝑚 + 𝐼𝑚        Mosquito population    

 Then the total derivatives of human population dynamics is given by  

𝑑𝑁𝐻

𝑑𝑡
 =

𝑑𝑆𝐻

𝑑𝑡
+

𝑑𝐸𝐻

𝑑𝑡
+

𝑑𝐼𝐻

𝑑𝑡
+

𝑑𝑅𝐻

𝑑𝑡
 

That is, 
𝑑𝑁𝐻

𝑑𝑡
=𝑏𝐻-𝜇𝐻(𝑆𝐻 + 𝐸𝐻 + 𝐼𝐻 + 𝑅𝐻)-𝜀𝐻𝐼𝐻 ≤ 𝑏𝐻-𝜇𝐻𝑁𝐻 

This imply that
𝑑𝑁𝐻

𝑑𝑡
≤ 𝑏𝐻-𝜇𝐻𝑁𝐻 

Rewriting the above we have   

𝑑𝑁𝐻

𝑑𝑡
  +𝜇𝐻𝑁𝐻 ≤ 𝑏𝐻                                                                                                            

   (3.1) 

Solving (3.1) using integrating factor which is 𝑒𝜇𝐻𝑡 

We now multiply both sides of through by integrating factor 𝑒𝜇𝐻𝑡 

𝑑

𝑑𝑡
(𝑁𝐻𝑒µ𝐻𝑡) ≤ 𝑏𝐻𝑒µ𝐻𝑡                                                                                                

   (3.2) 

Integrating (3.2), we have  

𝑁𝐻𝑒µ𝐻𝑡 ≤
𝑏𝐻

µ𝐻
𝑒µ𝐻𝑡+ K                                                                                        

   (3.3) 

Multiply (3.3) through by  𝑒 −µ𝐻𝑡 

𝑁𝐻 ≤
𝑏𝐻

µ𝐻
 + K𝑒 −µ𝐻𝑡                                                                                        

   (3.4) 

As t→ ∞ ,𝑁𝐻 ≤
𝑏𝐻

µ𝐻
 

Similarly mosquitoes’ population is given by 

𝑑𝑁𝑚

𝑑𝑡
=𝑏𝑚-𝜇𝑚(𝑆𝑚  + 𝐸𝑚  +   𝐼𝑚)                                                            

   (3.5) 

mmm
m Nb

dt

dN


                                                                       

   
(3.6) 
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Rewriting (3.6), we have  

𝑑𝑁𝑚

𝑑𝑡
+ 𝜇𝑚𝑁𝑚 ≤ 𝑏𝑚                                                                                                 

   (3.7) 

Solving (3.7), using integrating factor which is𝑒𝜇𝑚𝑡. 

Multiply through by𝑒𝜇𝑚𝑡, we have 

𝑑

𝑑𝑡
(𝑁𝑚𝑒µ𝑚𝑡) ≤ 𝑏𝑚𝑒µ𝑚𝑡                                                                                     

   (3.8) 

Integrating (3.8), we have 

𝑁𝑚𝑒µ𝑚𝑡 ≤
𝑏𝑚

µ𝑚
𝑒µ𝑚𝑡+K                                                                 

   (3.9) 

Multiply (3.9) through by 𝑒 −µ𝑚𝑡, we have  

𝑁𝑚 ≤
𝑏𝑚

µ𝑚
   + K𝑒 −µ𝑚𝑡                                                                                  

  (3.10) 

As t→ ∞ ,𝑁𝑚 ≤
𝑏𝑚

µ𝑚
 

Thus all solutions of the humans and mosquitoes population only are confined in the feasible 

region  Ω . Showing that the  

Feasible region for the formulated model (2.1) exists and is given by  

 Ω = {(𝑆𝐻,𝐸𝐻 , 𝐼𝐻,𝑅𝐻𝑆𝑚,𝐸𝑚, 𝐼𝑚,) ∈ 𝑅7, 𝑁𝐻 ≤
𝑏𝐻

µ𝐻
, 𝑁𝑚 ≤

𝑏𝑚

µ𝑚
} 

This end proof . 

 

Positivity of Solution  

Theorem 2: The solution  mmmHHHH IESRIES ,,,,,,  of the zika model with non-negative 

initial condition (2.2) in the feasible domain   remains non-negative in   for all 0t  

Proof: We will carry out the proof following ideals by Lashari et al (2012) and Chiyaka et al 

(2008) we assumed that for all t ≥ 0, let there exists t > 0 such that 𝑆𝐻 = 𝑂, and 

𝑆𝐻, 𝐸𝐻,𝐼𝐻,𝑅𝐻,𝑆𝑚, 𝐸𝑚,𝐼𝑚 > 0 for                      0 < 𝑡 < 𝑡∗ 
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From the first equation of (2.1) we have  

 

        
1

H H mH

H H H

H m

b S IdS
b S

dt V I


  

                                           

   (3.11)
 

        
H

H

H H

dS
b S

dt
   

        
0H

H H H

dS
S b

dt
  

    

  (3.12) 

Solving (3.12), we obtained 

        
    H Ht t

H H

d
S t e b e dt

dt

 


                                                                   

  (3.13)

 

Integrating (3.13) from 0  to *t  

         

 
*

*

0
0

( ) H H

H

t
t

t tHb
S t e e t

 




 

         
     

*
*

*
0

0H H
t

t t

H H HS t e S b e dt
 

  
                                                                 

  (3.14)
 

Multiplying (3.14) by *H t
e


        
 

         

( *)
H

Hb
S t as t


   

    *( ) 0 0S t for all t    

Hence,   0* tSH for all 0t  

Using the second equation of (2.1) we have 
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  HHHHHHH

mH

mHHH EIqbEPb
IV

ISb

dt

dE








1
                          

(3.15) 

Rewriting   (3.15) as 

  HH

mH

mHH

HHHH
H Iqb

IV

ISb
EPb

dt

dE





1


                                           

(3.16) 

Solving the first order differential equation (3.16), we obtained  

        
 

 tPb

HH

mH

mHHtPb

H
HHHHHH eIqb

tIV

tItSb
etE

dt

d 
















 

1
                

(3.17) 

Integrating (3.17) from 0 to *t , we have 

       
 

   * *

00 1
H H H H H H

t tPb t Pb tH H m

H H H

H m

b S t I t
E t e qb I t e dt

V I t

      
 

    
    

          

     
   

 
   



















*

0
*

1
0

t
tPb

HH

mH

mHH

H

tPb

H dtetIqb
tIV

tItSb
EetE HHHHHH  

   

 (3.18)               

Multiplying (3.18) by
 tPbHHHe

 
, we obtain 

           
 

   
0

1
0

*
**

0
* 













 


t

tPb

HH

mH

mHHtPbtPb

HH dtetIqb
tIV

tItSb
eeEtE HHHHHHHHH  

 

Hence,   0* tEH for all 0t  

From the third equation of (2.1) we have. 

  HHHHHH
H IE

dt

dI
               

  (3.19) 

 

Solving (3.19), we obtained 
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        HHHHHH etEetI
dt

d
HHH

  
                

(3.20) 

Integrating (3.20) from 0 to *t , we have 

       





**

00

t

HH

t

H
HHHHHH etEetI

   

         





*
*

0
* 0

t
t

HHH

t

H dtetEIetI HHHHHH               

   (3.21) 

Multiplying (3.21) through by 
  *H H H t

e
    

 

             
           

00
*

**

0
*  


t

t

HH

tt

HH dtetEeeItI HHHHHHHHH    

Hence,  * 0HI t  for all 0t  

Considering the fourth equation of (2.1) 

HHHH
H RI

dt

dR
 

                                                                            

  
(3.22) 

Solving (3.22), we obtained 

    t

HH

t

H
HH etIeR

dt

d                                     

(3.23) 

Integrating (3.23) from  0  to *t  

 
**

00

t
t

HH

t
t

H dtetIeR HH      

     
*

0
* 0

t
t

HHH

t

H dtetIRetR HH                                    

 (3.24) 

Multiply (3.24) through by *tHe


 

        
      00

*
**

0
*  


t

t

HH

tt

HH dtetIeeRtR HHH    
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Hence,  * 0HR t   for all 0t  

Considering the fifth equation of (2.1) we have, 

           
1

m m m H
m m m

m H

dS b S I
b S

dt V I


  

    

  (3.25)
 

      mmm
m Sb

dt

dS
  

Re-writing (3.25) as  

         
mmm

m bS
dt

dS
 

                                                                                              
  (3.26) 

Solving (3.26), we obtained
   

          

tm
m

tm
m ebeS

dt

d  )(  

      ( )m mt t

m md S e b e dt
 

     

  (3.27) 

Integrating (3.27) from 0 to *t  we have 

        

*

*

0

0

m

m

t
t

t
t m

m

m

b e
S e





  

        

*

*

(0)
m

m

t
t m

m m

m

b e
S e S





   

Multiplying through by 
*mt

e


we have 

          

*

*( ) (0) mt m
m m

m

b
S t S e






   

         

*( ) m
m

H

b
S t as t


   

         00)(  tallfortSm  
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Considering the sixth equation of (2.1) 

 
 

1

m m m H
m m m

m H

dS t b S I
E

dt V I


   


                                                  

(3.28) 

Solving (3.28), we obtained  

      
dte

IV

ISb
etE

dt

d t

Hm

Hmmt

m
HmHm   















1
                                                     

(3.29) 

Integrating (3.29) from 0 to *t , we have 

       
 

 


















**

00 1

t
t

Hm

Hmm
t

t

m dte
tIV

tItSb
etE HmHm  

   

         

     
   

 
 *

0
0

1

m H m H
tt tm m H

m m

m H

b S t I t
E t e E e dt

V I t

    
 

     
                              

   (3.30) 

Multiplying (3.30) through by 
 tHme

 
 

         

           

 
 *

0
0 0

1

m H m H m H
tt t tm m H

m m

m H

b S t I t
E t E e e e dt

V I t

         
 

      
  

Hence,   0tEm for all t > 0        

Finally, considering the sixth equation of (2.1) 

mmmm

m IE
dt

dI
                                   

  (3.31) 

Solving (3.31), we obtained 

        
0,mI as t  
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Hence, the solution  mmmHHHH IESRIES ,,,,,,  of the Zika model (2.1) with non-negative initial 

condition (2.2) in the feasible domain   remains non-negative in   for all 0t ∎ 

Existence of Steady State (Equilibrium) Points 

The steady states occur at points at which the differential equations of the model (2.1) equal to 

zero, that is 

0H H H H m m mdS dE dI dR dS dE dI

dt dt dt dt dt dt dt

 
       

 
 

This implies that 

0
1

H H m

H H H

H m

b S I
b S

V I


  


                  

  (3.32) 

  0
1




HHHHHHH

mH

mHH EIqbEpb
IV

ISb



         

  (3.33) 

  0 HHHHHH IE          

  (3.34) 

0H H H HI R                              

  (3.35) 

0
1




 mm

Hm

Hmm
m S

IV

ISb
b 


                   

  (3.36) 

  0
1




mmm

Hm

Hmm E
IV

ISb



         

  (3.37) 

0 mmmm IE            

  (3.38)  

Solving (3.32) to (3.38) gives the equilibrium at          
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*

*

*

*

*

*

*

(1 )

(1 )

(1 )( )

( )

(1 )

(1 )( )

H H H m H H m

H

H m H

H H m H m H H

H

H m H H H

H H

H

H H H

H H

H

H

m m Hm m m H

m

m H m

m H m

m

m H m m

m m

m

m

b b V I b S I
S

V I

b S I V I qb I
E

V I pb

E
I

I
R

b b V I b S I
S

V I

b S I
E

V I

E
I







 



  









 





  
 





  
  




 
  





 


 


 





 






b

(3.39)









 

It is Important to note that there is no trivial equilibrium points as long as the natural birth rate of 

human and mosquito Hb  and mb  respectively are not zero. This means that,

   0,0,0,0,0,0,0,,,,,, ******* mmmHHHH IESRIES  

Existence of Disease-free Equilibrium Point
 

Disease free equilibrium points are steady-state solutions where there is no zika virus. That is 

where 0 mmHH IEIE  

Substituting the values of  0 mmHH IEIE  into (3.39), we have 
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H

H
H

b
S


* and

mH

m
m

b
S


*       

Thus we have the disease-free steady (equilibrium) state as 











 0,0,,0,0,0,0

m

m

H

H bb




 

Basic Reproduction Number ( 0R ) of model (2.1) 

This is an important notation in epidemiology and it is usually denoted by 0R . This is the expected 

average number of new infections produced horizontal and vertically by a single infective when 

introduced into a completely susceptible population. Its significance in epidemiology is the fact 

that it determines whether a disease will spread through the population or not. To obtain 0R  for 

our model (2.1), we adapt the next generation matrix and method described by, van den Driessche 

and Watmough (2002).  

Let X  be the set of the entire disease compartments. That is,  

 , , ,H H m mX E I E I  

Then our model can be written as 

    
dX

f X v X
dt

                                                                 

(3.40) 

where  f X  is the rate of appearance of new infection into the disease compartments. 

 

m1 I

0

1

0

H

H

m H

H H m
H H H H

m m

b S I
pb E qb I

V

f x

b S I

V I





 
  

 
 
 
 

  
 
 

 
 
 
 
 
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 x is the rate of transfer of individual in and out of the disease compartments, it is defined by 

     
  xxx   

Where  


x is the rate of transfer of diseases out of the disease compartments 

 
 

 

 

 

H H H

H H H H

x

m m m

m m

E

I

E

I

 

 



 





 
 
 
  
 
 
 

 
 
 
 
 

e

 

and 
 x

v  is the rate of transfer of disease into the disease compartment by other means. 

 































mm

HH

x

E

E







0

0

 

therefore 

     

 

 

 

H H H

H H H H H H

x x

m m m

m m m m

E

I E

x

E

I E

 

  

  

 



 

 
 
 
   
 
   
 

 
 
 
  

e

a

 
F is the Jacobian of  xf with respect to disease compartments evaluated at the point 0 . 
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



































0000

000

0000

0

m

mm

H
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HH
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bb
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F









 

V is the Jacobian of  x  with respect to disease compartments evaluated at Point 0 . 








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
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The basic reproduction number  1

0

 FVpR is the spectral radius of the product 1FV . Hence for 

our model (2.1) we have. 
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Where    HHHHH GG   21 , and  mmG  3  

Basic Reproduction Number 00 | qpR  of model (2.3) 

This is the expected average number of new infections produce horizontally by single infective 

when introduced into a completely susceptible population. 
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The basic reproduction number  1

0 0|p qR FV 

    is the spectral radius of the product 1FV   

2
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2

00 |
mH

mmmHHH
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GGG

bbb
R


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where 

21

0|
GG

bb
R

H

HHH
qpH






                               

and                     
3

20|
G

bb
R

m

mmm
qpm




  

We can actually say that           mH RRR 2
0                                                                  

   (3.41) 

This implies that       mH RRR 0  

Stability of the Disease-free Equilibrium Point 

Theorem 3.3: The disease-free equilibrium (DFE), 0  is locally asymptotically stable (LAS) if 

 𝑅0 < 1 and unstable if𝑅0 > 1. 

Proof: The Jacobian matrix of the system (2.1) evaluated at the disease-free equilibrium point 0 , 

is obtained as 
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0]][)(][)(][)[]()()[(0 1234567   HHHHHHHHmmmm pbIJ

 

mmmmHHHHHHHH pb   7654321 ),(,,),(,)(,  

Since all the real parts of the seven eigen-values are negative, the DFE is locally asymptotically 

stable. This ends the proof∎. 

Global Stability Analysis 

Theorem 3:4: The disease-free equilibrium,
 0  of the model (2.3), is globally asymptotically 

stable in   if 1| 00 qpR . 

  

Proof: To establish the global stability of the disease-free equilibrium 0 , we consider the 

following linear Lyapunov function (L).  
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1 2 3 4H H H mL C E C I C I C E   
                                                                                  

(3.42)                                                                                                                                                                   

Where 
2
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m
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C




  , 
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m

m

G

R
C





3

0
3   and 

m

R
C


0

4   

Then substituting the Values of 321 ,, CCC and 4C  into (3.42), we have 
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m
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(3.43) 

Differentiating (3.43) with respect to disease compartments 
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(3.44) 

Substituting the values of 
mHH EIE  ,, and mI from model (2.3) into (3.44) 
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Collecting like terms   
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Substituting 
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Therefore oL   for 1| 00 qpR   and oL   if and only if 0 Hm II  by Lasalle’s invariance 

principle, 
0  is globally asymptotically stable if 1| 00 qpR .∎ 

Theorem 3.5: The endemic equilibrium (EE) of the model (3.3) is globally asymptotically stable 

whenever 1| 00 qpR  

To achieve this, we use the nonlinear Lyapunov function of Goh-Volterra type which has been 

found to be very successful. See, for instance, Geogescu and Zhang (2013) for more on the 

application of this Lyapunov function. 

Proof: Let the endemic equilibrium of the special case model (3.3) be denoted by

 0
* * * * * *, , , , ,H H H m m mS E I S E I   and let 1| 00 qpR  so that L exists. 

Consider the following nonlinear Lyapunov function. 
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(3.45) 
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Differentiating (3.45), we have  

 

                

(3.46) 
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  (3.47) 

Where upper dot represents the differentiation with respect to time t. Putting 

the appropriate equations of model (2.3) in (3.47), we have 
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   (3.48) 

At steady state of (3.48) 
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H
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  

 
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Substituting the values of steady state of Hb  and mb  into (3.48) we have  
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










































































































mmmm

m

m

m

Hm

Hmm

m

m

mm

Hm

Hmm

mm

Hm

Hmm

m

m

HHH

H

H
H

mH

mHH

H

H

HH

mH
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(3.49) 
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, 
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C

 **2

\21
3

11 

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SSb

IVIVGGG
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 **2
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4

11 


 

Where 321 ,, CCC  and 4C  are the coefficients of the Lyapunov function. 

Now substituting the values of 321 ,, CCC and 4C  into (3.49), we have 
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Hence from (3.50) we collect all the terms with dot stars in the infected classes including all 

mmHHHH SSS  ,, * and *
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(3.51) 

Substitute the values of steady state of 321 ,, GGG inside bracket of (3.51), and factor out the 

common factors. 

                         

(3.50)  
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(3.52) 

Substituting the values of steady states of 321 ,, GGG and m  into (3.52) we have 
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      (3.53)

 

Adding the common factors in (3.53), we have 
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(3.54) 

Collecting all the positives and negatives term of L in (3.54) we have  
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  (3.56)

 

From (3.55) and (3.56), we observed that BA   then 0
dt

dL
L  (which mean that L will be 

negative definite) 
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0

dL
L

dt
 

 
if only if

mmmmHHHHHH EESSIIEESS  ***** ,,,, and mm II *  

Thus the largest compact invariant set {   0:,,,,, ****** 
dt

dL
IESIES mmmHHH  } Is just the endemic 

equilibrium point . Then by Lassalle invariant principle, if BA  , then    will be globally 

asymptotically stable in . This ends the proof. ∎ 

Numerical Solution and Discussion 

We give some numerical simulation from practical point of view, numerical solutions are very 

important beside analytical study. We study the numerical behavior of the model (2.1) and model 

(2.3) with initial conditions (2.2). The numerical simulations are conducted using 2014 MATLAB 

software and the results are given in figures below.  

Parameter Values Reference 

Hb  0.000215 Olaniyi and Obabiyi (2013) 

mb  0.07 Olaniyi and Obabiyi (2013) 

b  0.5 Derouich et al (2006) 

H  0.1 Olaniyi and Obabiyi (2013) 

m  0.09 Olaniyi and Obabiyi (2013) 

HV  0.2 Olaniyi and Obabiyi (2013) 

mV  0.1 Olaniyi and Obabiyi (2013) 

H  0.3 Garba et. al (2008) 
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m  0.17 Assumed 

H  0.000046 Hiroshi et. al (2016) 

m  0.07 Olaniyi and Obabiyi (2013) 

H  0.09 Hiroshi et al (2016) 

H  0.00001 Assumed 

p  0.0003 Assumed 

q  0.0005 Assumed 

HS  100  Assumed 

HE  20 Assumed 

HI  10 Assumed 

HR  3 Assumed 

mS  1000 Assumed 

mE  30 Assumed 

mI  20 Assumed 
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                Table 1: Model Parameters and Values Used in Simulation 

GRAPHS OF THE SIMULATION OF MODEL AT 10 R  

 

 

                Fig. 2: The behavior of all the human and mosquito compartments. 

The Fig.2 above shows that the infected human increases from 10 to its peak value within the first 

10 days it slightly step down within the second 10 days until it gets to a period of 55 days where 

it became drastically zero throughout the period. All the compartments reduces to zero except 𝑅𝐻 

which increases with time (that is there is perfect recovering). Biologically it means that zika virus 

will completely be eradicated from the population as time goes on. 
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     Fig. 3: The behavior of susceptible human and infectious human for different values of b 

Fig.3 shows the varying effect of biting rate (b) of mosquitoes on human population, we can 

observed that an increase in biting rate leads to increase in infectious class while decrease in biting 

rate leads to decrease in infectious class. Biologically it means that the biting rate of mosquito in 

our environment has a high level of effect on spread of zika virus on human population. 
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Fig.4: The behavior of susceptible and infectious human for different values of 𝑉𝐻 

Fig.4 shows the varying effects of antibody on human population on human population. We 

observed that susceptible human (𝑆𝐻) population drops as a result of infection by infectious 

mosquito and later stabilized when the human developed antibody ( 𝑉𝐻) against the parasite 

causing zika virus. The magnitude of the infectious human population decreases with increased 

presence of antibody. Biologically it means that building a strong antibody system reduces the rate 

of infection on human population.   
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Fig.5: The behavior of susceptible and infectious mosquito for different values of 𝑉𝑚 

Fig.5 similarly shows the effects of antibody on mosquito population. We observed that susceptible 

mosquito ( 𝑆𝑚) population drops as a result of infection by infectious human. The infectious 

mosquito population decreases with an increase presence of antibody produced by mosquitoes. 
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        Fig.6: The behavior of susceptible and infectious human for different values of 𝜇𝑚 

Fig.6 shows the variation of natural death rate of mosquito. As we reduces the number of death 

rate of mosquito (that is, using insecticides or any other means), we observed that the level of 

infectious human reduces. 
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GRAPH OF THE SIMULATION OF MODEL AT 1
00 

qp
R  

 

Fig.7: The behavior of all the human and mosquito compartments. 

Fig.7 shows that at the initial time there will be little or no infected human but within the first 10 

days, the infected human ( 𝐼𝐻) increased to its peak level and gradually steps down to zero as time 

goes on. While  𝑅𝐻 shows a perfect recovery. Comparing fig.7 and fig.2 we observed that in fig.2, 

the zika virus was eradicated from the population within a short period while in fig.7 the zika virus 

was eradicated in shorter time. This implies that in a population of two transmission the zika virus 

will take longer time to eradicated than that of one transmission 

 

 

 

 

ISSN 2688-8300 (Print) ISSN 2644-3368 (Online) JMSCM, Vol.1, No.2, February, 2020

158 Journal of Mathematical Sciences & Computational Mathematics



Summary, Conclusion and Recommendation 

       Summary 

This thesis presents a deterministic model for the transmission dynamics of zika virus with vertical 

transmission involving seven compartments made up of two different populations (Humans and 

Mosquitoes). The human population has four compartments which are: susceptible, Exposed, 

Infected and Recovered compartments. HHHH RIES   . The Mosquito compartments are: 

Susceptible, Exposed and Infected compartments. mmm IES   . We extended the model by 

taking into account of exposed individuals, nonlinear forces of infection (saturated incidence rates) 

and vertical transmission. We showed that both human and mosquito develop antibodies through 

saturated incidence rates. We established a region where the model is epidemiologically feasible 

and mathematically well-posed (which is the invariant region) and also the positivity of the 

solution of the model. We showed the existence of disease-free equilibrium (DFE) and endemic 

equilibrium (EE) points. We also obtained the reproduction number of the model and reproduction 

number of special case model where we set p=q=0 using the next generation matrix technique. We 

further developed lyapunov functions to prove the global stability of both disease-free equilibrium 

(DFE) and endemic equilibrium (EE) when 
00 qp

R  is less than unity and greater than unity 

respectively. 

RESULTS OF SIMULATIONS 

The simulation results on the first model show that the varying effects of biting rate b of 

mosquitoes on human population has a higher effect in zika virus transmission. It can be seen from 

the graph that the higher the biting rate of mosquito, the higher the zika virus transmission. Also, 

the more we increase the antibody, the lower the zika virus transmission. Biologically, it means 

that people need to protect themselves from the bite of mosquitoes so as to reduce the rate of 

transmission .We also observed that depopulating mosquito leads to decrease in infected 

population. 

The behavior of the simulation under horizontal transmission  {that is model (3.9)} for 10 
 oqp

R  

show that at the initial time, there where  little or no infected humans but within the first 10 days, 

the infected humans  HI  increased to its peak level and gradually steps down to zero as time goes 

on. 

We also finds out that model (3.7) have a higher level of infection because of the recruitment of 

vertical transmission while model (3.9) has little higher infection. We observed that in Figure 4.1 

the zika virus was eradicated from the population within a period of 55 days while that of Figure 

4.6 was eradicated within a period of 35 days. This means that the zika virus can easily be 

controlled in a shorter time in model (3.9) than in model (3.7).  
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CONCLUSION 

       (i) The disease-free equilibrium   𝜀0, is locally asymptotically stable if 𝑅0 < 1 and unstable if    𝑅0 >

1: The implication of the above result is that the zika virus can be eradicated from the population 

if there be a bound on the rate of transmission between mosquito and human .  

      (ii) The disease-free equilibrium of the model is globally asymptotically stable when 10 
 oqp

R  , 

with no loss of immunity acquired by the recovered individuals. This shows that the zika-free 

population is possible. 

      (iii)The model has a globally asymptotically stable endemic equilibrium if the threshold parameter,

0 p q o
R

 
, is greater than unity. 

       (iv) The numerical simulations were performed to see the effects of the proportions of    antibodies 

produced by both populations and other key parameters on the spread of the zika virus. 

        (v) It is also important to note that reducing human-mosquito contact rate plays a big role in inhibiting   

the prevalence of Zika virus. 

RECOMMENDATIONS 

1.  Eating right food and taking plenty of fluid like water can help to boost the level of 

antibodies in human because humans needs to boost their antibodies production to be able 

to resist the presence of zika-parasites in the blood stream. 

2.  We can achieve a zika-free state by scaling down mosquito biting rate through the use of 

insecticides, closing of doors and windows against mosquitoes. 

3.  The government, non-governmental organizations and stakeholders should help in 

creating awareness because prevention is better than cure. 

CONTRIBUTIONS TO KNOWLEDGE 

The following are our contributions to knowledge 

      1. We introduced vertical transmission into the existing model and extending the model from five 

compartments to seven compartments by adding exposed classes. 

     2. We have been able to construct linear and nonlinear Lyapunov function to prove the global 

stability analysis of both DFE and EEP using Zika model.                                              
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AREAS OF FURTHER STUDIES 

Further research may include investigation of applying stochastic models like Continuous Time 

Markov Chain as well as Discrete Time Markov Chain Models to verify the effectiveness of the 

SDE on Zika model.  They can also look into Sensitivity Analysis of Zika Virus. In future work 

also, we may look at the vaccine for Zika Virus and the control measures. 
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