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Abstract   

In this investigation, regular perturbation procedures in asymptotic expansions of the relevant variables are 

employed to discuss the static buckling analysis of a finite deterministically imperfect but viscously damped 

column resting on some quadratic–cubic nonlinear elastic foundations, but struck by a step load. The 

governing equation for the system under discussion is fully nonlinear, so that a closed form and easy 

solution to the problem is not possible.  An approximate analytical solution to the problem is obtained using 

asymptotic and perturbation techniques and numerical results obtained show that increase in imperfection 

factors lower the static buckling loads of the column.  

Keywords: Static Buckling, Asymptotic and perturbation methods, Light and Viscous damping, Step Load. 

INTRODUCTION 

Most often in the dailies we hear of collapse of buildings, bridges and other material structures. 

All or some of these are forms of buckling. Buckling is catastrophic in nature and should be 

avoided at all costs. Enormous resources and efforts have already been put by Engineers and 

Applied Mathematicians in order to get the optimal loads (buckling loads) that structures can carry 

before buckling occurs, yet buckling of elastic material structures still occurs from time to time. 

There is already in existence a substantial quantum of investigations related to the stability (or 

otherwise) of columns (finite or infinite) when subjected to either a static load or dynamic loads. 

Some of these earlier studies include investigations by Amazigo and Ette (1987), Amazigo and 

Frank (1973), Elishakoff and Gue de  (2001) and Ette (1992), among others. We however, remark 

that the static problem of infinitely long columns was investigated by Amazigo et al. (1971) by 

using the method of equivalent linearization as well as a perturbation expansion involving double 

scaling in the spatial variable. Most of the earlier works done on this subject matter had used the 

numerical methods (Finite Element Methods) for the buckling analysis. In this study, we are 

investigating, using purely analytical methods, the static buckling and stability of a finite 

deterministically imperfect but viscously damped column resting on some quadratic–cubic 

nonlinear elastic foundations, but struck by a step load.  
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FORMULATION OF THE PROBLEM 

The usual differential equation satisfied by the deflection W(X, T) of the column under 

consideration satisfies the following partial differential equation, as in Amazigo and Frank (1973), 

Amazigo and Oyesanya (1986) and Ette (2003): 

                𝑚0𝑊,𝑇𝑇 + 𝑐0𝑊,𝑇 + 𝐸𝐼𝑊,𝑋𝑋𝑋𝑋 + 2𝑃(𝑇)𝑊,𝑋𝑋 + 𝑘1𝑊 − 𝑘2𝑊
2 − 𝑘3𝑊

3      

=   −2𝑃(𝑇)
𝜕2𝑊̅

𝜕𝑋2
,    𝑇 > 0, 0 < 𝑋 <  𝜋                             (2.1𝑎)  

                     𝑊 =  𝑊,𝑋𝑋 = 0, 𝑎𝑡 𝑋 = 0, π,    𝑡 ≥ 0                                                (2.1𝑏) 

                 𝑊(𝑋, 0) =  𝑊,𝑇(𝑋, 0) =  0,   0 < 𝑋 <  𝜋                                             (2.1𝑐) 

where, a comma preceding a subscript indicates partial differentiation. Here, 𝑚0 is the mass per 

unit length, 𝑐0 is the damping coefficient, EI is the bending stiffness, where E and I are the Young’s 

modulus and the moment of inertia respectively. Here, the nonlinear elastic foundation exerts a 

force per unit length given by 𝑘1𝑊 − 𝑘2𝑊
2 − 𝑘3𝑊

3 on the column, where 𝑘1, 𝑘2 and 𝑘3 are 

constants such that 𝑘1>0, 𝑘2 > 0 𝑎𝑛𝑑 𝑘3> 0. In this formulation, we have excluded all 

nonlinearities higher than cubic, while all nonlinear derivatives of W(X, T) are also excluded.  𝑊̅ 

is the stress – free time independent twice – differentiable initial imperfection displacement. All 

aspects of axial inertia are neglected. Equation (2.1a) is a dimensional partial differential equation, 

and so in order to render it non – dimensional, we adopt the following quantities as in 

Chukwuchekwa (2017): 

  𝑥 =  (
𝑘1

𝐸𝐼
)

1
4
𝑋,     𝑤 =  (

𝑘2

𝑘1
)

1
2
𝑊,     𝜆𝑓(𝑡) =  

𝑃(𝑇)

2(𝐸𝐼𝑘1)
1
2

 ,      𝜖𝜛 =  (
𝑘3

𝑘1
)

1
2
𝑊̅    (2.2𝑎) 

      2𝛿 =    
𝑐0

(𝑚0𝑘1)
1
2

,      𝑡 =  (
𝑘1

𝑚0
)

1
2
𝑇,         𝛼 =  

𝑘2

√𝑘1𝑘2

,     𝛽 = (
𝑘3

𝑘1
)

3
2
𝑊̅         (2.2𝑏) 

Here, we shall assume the following inequalities 

           0 <  𝛿 < 1,        0 <  𝜖 ≪ 1 𝑎𝑛𝑑 0 <  𝜆 < 1                                                 (2.3)   

On substituting (2.2a, b) into (2.1a) and simplifying, we obtain 

            𝑤,𝑡𝑡  + 2𝛿𝑤,𝑡  + 𝑤,𝑥𝑥𝑥𝑥 +  2𝜆𝑓(𝑡)𝑤,𝑥𝑥 +  𝑤 −  𝛼𝑤2 −  𝛽𝑤3 =

                       −2𝜖𝜆𝑓(𝑡)
𝑑2𝜛

𝑑𝑥2
,    𝑡 > 0,    0 < 𝑋 <  𝜋                                               (2.4𝑎)  

            𝑤 =  𝑤,𝑋𝑋 = 0, 𝑎𝑡 𝑥 = 0, π,   𝑡 ≥ 0                                                               (2.4𝑏) 
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           𝑤(𝑥, 0) =  𝑤,𝑡(𝑥, 0) =  0, 0 < 𝑥 <  𝜋                                                    (2.4𝑐) 

In the dynamic case, we shall assume the step function for f(t), i.e,  

             𝑓(𝑡) = {
1, 𝑡 > 0
0, 𝑡 < 0

                                                                                       (2.4𝑑) 

In the case where there is no preload, the relevant equation is  

          𝑤,𝑡𝑡  + 2𝛿𝑤,𝑡  + 𝑤,𝑥𝑥𝑥𝑥 +  2𝜆𝑤,𝑥𝑥 +  𝑤 −  𝛼𝑤2 −  𝛽𝑤3  =  −2𝜖𝜆
𝑑2𝜛

𝑑𝑥2
     (2.5) 

Here, we are assuming δ and 𝜖 to be two small but unrelated parameters that satisfy the inequalities 

as in (2.3). Our ultimate aim is to determine the static buckling load 𝜆𝑆. According to Budiansky 

and Hutchison (1966) and Ette and Onwuchekwa (2007), the condition for static buckling is 

                
𝑑𝜆

𝑑𝑤
= 0                                                                                                                   (2.6) 

where, w is the displacement. 

STATIC DEFORMATION OF THE COLUMN 

We shall let 𝜔 (x) be the displacement during the static loading. Here, there is no time dependence 

on the displacement. In this case, we must neglect the inertia term, the damping term and all other 

time dependent terms and set 𝑓(𝑡) ≡ 1 in (2.5), so that the resultant equation from (2.5) is 

           
𝑑4𝜔

𝑑𝑥4
+  2𝜆

𝑑2𝜔

𝑑𝑥2
+  𝜔 −  𝛼𝜔2 −  𝛽𝜔3  =  −2𝜖𝜆

𝑑2𝜛

𝑑𝑥2
,   0 < 𝑥 < π             (3.1) 

                  𝜔 =  
𝑑2𝜔

𝑑𝑥2
 = 0, 𝑎𝑡 𝑥 =  0, π                                                                   (3.2) 

For solution, we assume the asymptotic expansion, 

                 𝜔(𝑥) =  ∑𝜔𝑖𝜖𝑖

∞

𝑖=1

                                                                                           (3.3) 

and, following (3.2), we let 

 𝜛 = 𝑎̅𝑚𝑠𝑖𝑛𝑚𝑥,𝑚 𝑓𝑖𝑥𝑒𝑑, 𝑎𝑛𝑑 │𝑎̅𝑚│ ≪ 1                                                   (3.4) 

On substituting (3.4) on the right hand side of (3.1), we obtain 

           
𝑑4𝜔

𝑑𝑥4
+  2𝜆

𝑑2𝜔

𝑑𝑥2
+  𝜔 −  𝛼𝜔2 −  𝛽𝜔3  =  2𝜖𝜆𝑎̅𝑚𝑚2𝑠𝑖𝑛𝑚𝑥                          (3.5) 

ISSN 2688-8300 (Print) ISSN 2644-3368 (Online) JMSCM, Vol.1, No.2, February, 2020

168 Journal of Mathematical Sciences & Computational Mathematics



On substituting (3.3) into (3.5), and equating coefficients of powers of 𝜖,we get 

                𝐿𝜔(1)  ≡  𝜔,𝑥𝑥𝑥𝑥
(1)

+  2𝜆𝜔,𝑥𝑥
(1)

+ 𝜔(1) =  2𝜆𝑎̅𝑚𝑚2𝑠𝑖𝑛𝑚𝑥                        (3.6) 

                𝐿𝜔(2) =  𝛼(𝜔(1))
2
                                                                                          (3.7) 

 𝐿𝜔(3) = 2 𝛼𝜔(1)𝜔(2) +  𝛽𝜔(1)3                                                                    (3.8) 

etc. 

       𝜔(𝑖) = 𝜔,𝑥𝑥
(𝑖)

= 0, 𝑎𝑡 𝑥 = 0, 𝜋                                                                     (3.9)  

At this stage, we have let  
𝑑𝜔

𝑑𝑥
 ≡  𝜔,𝑥 

For solution of the systems of equations above, we assume 𝜔(𝑖) 𝑖𝑛  the form, 

                    𝜔(𝑖) = ∑ 𝜔𝑛
(𝑖)

𝑠𝑖𝑛𝑛𝑥                                                                                (3.10)

∞

𝑛=1

 

We now substitute (3.10) into (3.6) and get 

 ∑ {(𝑛4 −  2𝜆𝑛2 +  1)𝜔𝑛
(1)

}𝑠𝑖𝑛𝑛𝑥 =  2𝜆𝑎̅𝑚𝑚2𝑠𝑖𝑛𝑚𝑥                          (3.11)∞
𝑛=1  

If we multiply (3.11) by sinmx and integrate from 0 to π, we obtain, for n = m, 

 
𝜋

2
{(𝑚4 −  2𝜆𝑚2 +  1)𝜔𝑚

(1)
} =  

𝜋

2
(2𝜆𝑎̅𝑚𝑚2)                                                (3.12) 

                      ∴     𝜔𝑚
(1)

=  
2𝜆𝑎̅𝑚𝑚2

𝛺𝑚
2

= 𝐷𝑚                                                                (3.13𝑎) 

where, 

 𝛺𝑚
2 = (𝑚4 −  2𝜆𝑚2 +  1 ) > 0, ∀  𝑚                                                         (3.13𝑏)  

 ∴  𝜔(1) = 𝜔𝑚
(1)

𝑠𝑖𝑛𝑚𝑥                                                                                       (3.14) 

On substituting for 𝜔𝑚
(1)

 from (3.14) in (3.7), we get 

                        𝐿𝜔(2) =  𝛼(𝜔𝑚
(1)

)
2

sin2 𝑚𝑥                                                                  (3.15) 

Using (3.10) 0n (3.15), we get 

 ∑ {(𝑛4 −  2𝜆𝑛2 +  1)𝜔𝑛
(2)

}∞
𝑛=1 𝑠𝑖𝑛𝑛𝑥 =  𝛼(𝜔𝑚

(1)
)
2

sin2 𝑚𝑥                      (3.16) 
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We multiply (3.16) by sinmx and integrate from 0 to π and obtain for n = m, 

 
𝜋

2
{(𝑚4 −  2𝜆𝑚2 +  1)𝜔𝑚

(2)
} =  

4𝛼(𝜔𝑚
(1)

)
2

3𝑚
                                                    (3.17𝑎) 

∴     𝜔𝑚
(2)

=  
8𝛼(𝜔𝑚

(1)
)
2

3𝑚𝜋𝛺𝑚
2

, (for m odd)                                                     (3.17𝑏) 

                 ∴  𝜔(2) = 𝜔𝑚
(2)

𝑠𝑖𝑛𝑚𝑥                                                                                  (3.18)  

We now substitute in (3.8) and get, 

                    𝐿𝜔(3) = 2𝛼𝜔𝑚
(1)

𝜔𝑚
(2)

sin2 𝑚𝑥 +  𝛽(𝜔𝑚
(1)

)
3

sin3 𝑚𝑥                         (3.19) 

On using (3.10) in (3.19), we get 

∑{(𝑛4 −  2𝜆𝑛2 +  1)𝜔𝑛
(3)

}

∞

𝑛=1

𝑠𝑖𝑛𝑛𝑥 =  2𝛼𝜔𝑚
(1)

𝜔𝑚
(2)

sin2 𝑚𝑥 +  𝛽(𝜔𝑚
(1)

)
3

sin3 𝑚𝑥 

On further simplification, we have 

  

∑{(𝑛4 −  2𝜆𝑛2 +  1)𝜔𝑛
(3)

}

∞

𝑛=1

𝑠𝑖𝑛𝑛𝑥

=  𝛼𝜔𝑚
(1)

𝜔𝑚
(2)(1 − 𝑐𝑜𝑠2𝑚𝑥) +  

𝛽(𝜔𝑚
(1)

)
3

4
(3𝑠𝑖𝑛𝑚𝑥 −  𝑠𝑖𝑛3𝑚𝑥)      (3.20) 

At this stage, the buckling mode splits into two, i.e, those in the shape sinmx, and those in the 

shape sin3mx. On multiplying (3.20) by sinmx and integrating from 0 to π, we get for n = m, 

   
𝜋

2
𝛺𝑚

2 𝜔𝑛
(3)

= 
8𝛼

3𝑚
𝜔𝑚

(1)
𝜔𝑚

(2)
+ 

3𝜋𝛽(𝜔𝑚
(1)

)
3

8
                                                      (3.21𝑎) 

hence, 

      𝜔𝑛
(3)

= 
16𝛼𝜔𝑚

(1)
𝜔𝑚

(2)

3𝑚𝜋𝛺𝑚
2 + 

3𝛽(𝜔𝑚
(1)

)
3

4𝛺𝑚
2                                                                    (3.21𝑏) 

                   ∴     𝜔𝑚
(3)

= 
128𝛼2𝐷𝑚

2

(3𝑚𝜋𝛺𝑚
2 )2

 +  
3𝛽(𝜔𝑚

(1)
)
3

4𝛺𝑚
2

                                                  (3.21𝑐) 

On the other hand, if we multiply (3.20) by sin3mx and integrate from 0 to π, we get for   
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𝑛 = 𝑚, 

 𝜔3𝑚
(3)

 =  
−2𝛼𝜔𝑚

(1)
𝜔𝑚

(2)

3𝑚𝜋𝛺3𝑚
2 − 

𝛽𝜔𝑚
(1)

4𝛺3𝑚
2                                                                            (3.22𝑎) 

where, 

     𝛺3𝑚
2 = 81𝑚4 −  18𝜆𝑚2 +  1 > 0, ∀  𝑚                                                 (3.22𝑏) 

 Hence, we get 

 𝜔(3) = 𝜔𝑚
(3)

𝑠𝑖𝑛𝑚𝑥 + 𝜔3𝑚
(3)

𝑠𝑖𝑛3𝑚𝑥                                                              (3.23) 

Thus, following (3.3), we get 

            𝜔(𝑥) =  𝜔(1)𝜖 + 𝜔(2)𝜖2 + 𝜔(3)𝜖3 + …  

 ⤇ 𝜔(𝑥) =  𝜖𝜔𝑚
(1)

𝑠𝑖𝑛𝑚𝑥 + 𝜖2𝜔𝑚
(2)

𝑠𝑖𝑛𝑚𝑥 + 𝜖3(𝜔𝑚
(3)

𝑠𝑖𝑛𝑚𝑥 + 𝜔3𝑚
(3)

𝑠𝑖𝑛3𝑚𝑥) + …  (3.24) 

 

For simplification, we shall determine (3.24) at its maximum point, where 

              𝑥𝑎 = 
𝜋

2𝑚
                                                                                                              (3.25) 

where, 𝑥𝑎 is the value of x for 𝜔(𝑥) to attain its maximum, thus, 𝜔𝑎 =  𝜔(𝑥𝑎). Then, 

               𝜔𝑎 =   𝜖𝜔𝑚
(1)

+ 𝜖2𝜔𝑚
(2)

+ 𝜖3(𝜔𝑚
(3)

− 𝜔3𝑚
(3)

) + …                                     (3.26)  

If we substitute for 𝜔𝑚
(1)

, 𝜖2𝜔𝑚
(2)

, 𝜔𝑚
(3)

and 𝜔3𝑚
(3)

in (3.26), we have 

𝜔𝑎 = 𝐷𝑚𝜖 + 
8𝛼𝐷𝑚

2

3𝑚𝜋𝛺𝑚
2

𝜖2 + 𝜖3 (
128𝛼2𝐷𝑚

2

(3𝑚𝜋𝛺𝑚
2 )2

 +  
3𝛽𝐷𝑚

3

4𝛺𝑚
2

+ 
2𝛼2𝐷𝑚

3

3𝑚𝜋𝛺𝑚
2

+ 
𝛽𝐷𝑚

3

4𝛺3𝑚
2 ) + …   (3.27)  

On further simplification, we get 

 𝜔𝑎 =  𝑒1𝜖 + 𝑒2𝜖
2 + 𝑒3𝜖

3 + …                                                                      (3.28𝑎) 

where, 

             𝑒1 = 𝐷𝑚,      𝑒2 = 
8𝛼𝐷𝑚

2

3𝑚𝜋𝛺𝑚
2

,          𝑒3 = 
3𝛽𝐷𝑚

3𝜌1

4𝛺𝑚
2

                                      (3.28𝑏) 

where, 
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 𝜌1 = 1 + 
512

27(𝑚𝜋)2𝛺𝑚
2 (

𝛼2

𝛽
) + 

1

3
(

𝛺𝑚
2

𝛺3𝑚
2 ) (

𝛼2

𝛽
) + 

8

9𝑚𝜋
(

𝜑𝑚
2

𝜑3𝑚
2 )                            (3.28𝑐)  

In order to use the condition, 
𝑑𝜆

𝑑𝜔𝑎
= 0, we need to reverse the series (3.28a), as in Ette and 

Onwuchekwa (2007), and get 

 𝜖 =  𝑓1𝜔𝑎 + 𝑓2𝜔𝑎
2 + 𝑓3𝜔𝑎

3 + …                                                                 (3.29) 

We need to determine 𝑓𝑖  ,    𝑖 = 1, 2, 3, …. By substituting for 𝜔𝑎 from (3.28a) into (3.29) and 

equating the coefficients of 𝜖, 𝜖2, 𝜖3, etc., we get 

        𝑓1 = 
1

𝑒1
,      𝑓2 = 

−𝑓1𝑒2

𝑒1
2  =   

−𝑒2

𝑒1
3 ,   𝑓3 = 

−(𝑓1𝑒3 +  2𝑓2𝑒1𝑒2)

𝑒1
3 = 

2𝑒1
2 − 𝑒1𝑒3

𝑒1
5          (3.30) 

The maximization,  
𝑑𝜆

𝑑𝜔𝑎
= 0  is accomplished by knowing that each 𝑒𝑖 is a function of λ. The 

maximization is better done using (3.29) to yield,  

𝑑𝜖

𝑑𝜔𝑎
= {(

𝑑𝑓1
𝑑λ

𝑑λ

𝑑𝜔𝑎
)𝜔𝑎 + 𝑓1} + {(

𝑑𝑓2
𝑑λ

𝑑λ

𝑑𝜔𝑎
)𝜔𝑎 +  2𝑓2𝜔𝑎} + {(

𝑑𝑓3
𝑑λ

𝑑λ

𝑑𝜔𝑎
)𝜔𝑎 +  3𝑓3𝜔𝑎

2},  

but, 

 
𝑑𝑓1

𝑑λ

𝑑λ

𝑑𝜔𝑎
=  

𝑑𝑓2

𝑑λ

𝑑λ

𝑑𝜔𝑎
= 

𝑑𝑓3

𝑑λ

𝑑λ

𝑑𝜔𝑎
= 0  

Hence, we get 

             𝑓1 +  2𝑓2𝜔𝑎 +  3𝑓3𝜔𝑎
2 = 0                                                                                   (3.31) 

where, (3.31) is determined at 𝜆 = 𝜆𝑆,  and on solving for 𝜔𝑎(𝜆𝑆) in (3.31), we get, 

𝜔𝑎(𝜆𝑆) =  
1

3𝑓3
(−𝑓2  ±  (𝑓2

2 −  3𝑓1𝑓3)
1
2)                                                              (3.32) 

We shall now simplify (3.32). Now, we have, 

(𝑓2
2 −  3𝑓1𝑓3)

1
2 = √

3𝑒3

𝑒1
5 (1 − 

5𝑒2
2

3𝑒1𝑒3
)                                                              (3.33𝑎) 

However, we shall take only the negative sign in (3.32). Thus, we get 

 −𝑓2 − (𝑓2
2 −  3𝑓1𝑓3)

1

2 = −(𝑓2
2 −  3𝑓1𝑓3)

1

2 [1 + 
𝑓2

(𝑓2
2− 3𝑓1𝑓3)

1
2

]                       (3.33𝑏) 

On substituting 𝑓1, 𝑓2 and 𝑓3 in (3.33b), we get 
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 −𝑓2 − (𝑓2
2 −  3𝑓1𝑓3)

1

2 = −(𝑓2
2 −  3𝑓1𝑓3)

1

2 [1 + 
𝑓2

(𝑓2
2− 3𝑓1𝑓3)

1
2

] 

                 =  −√
3𝑒3

𝑒1
5 (1 − 

5𝑒2
2

3𝑒1𝑒3
)

[
 
 
 
 
 

1 − 
𝑒2

𝑒1
3

√
3𝑒3

𝑒1
5 (1 − 

5𝑒2
2

3𝑒1𝑒3
)
]
 
 
 
 
 

 

               =  −√
3𝑒3

𝑒1
5 (1 − 

5𝑒2
2

3𝑒1𝑒3
)

[
 
 
 
 
 

1 − 
𝑒2

√
3𝑒3

𝑒1
5 (1 − 

5𝑒2
2

3𝑒1𝑒3
)
]
 
 
 
 
 

                                  (3.34) 

Now, we have 

                     𝑓3 = 
2𝑒1

2 − 𝑒1𝑒3

𝑒1
5 = 

−𝑒3

𝑒1
4 (1 − 

2𝑒2
2

𝑒1𝑒3
)                                                  (3.35) 

          ∴  𝜔𝑎(𝜆𝑆) =  
1

3𝑓3
(−𝑓2 − (𝑓2

2 −  3𝑓1𝑓3)
1
2)

=   
1

−𝑒3

𝑒1
4 (1 − 

2𝑒2
2

𝑒1𝑒3
)

[
 
 
 
 
 
 

−√
3𝑒3

𝑒1
5 (1 − 

5𝑒2
2

3𝑒1𝑒3
)

[
 
 
 
 
 

1 − 
𝑒2

√3𝑒3

𝑒1
(1 − 

5𝑒2
2

3𝑒1𝑒3
)
]
 
 
 
 
 

]
 
 
 
 
 
 

 

 

                         =  
√

𝑒1
3 (1 − 

5𝑒2
2

3𝑒1𝑒3
)

3𝑒3

[
 
 
 
 
 
 
 1 − 

𝑒2

√3𝑒3

𝑒1
(1 − 

5𝑒2
2

3𝑒1𝑒3
)

(1 − 
2𝑒2

2

𝑒1𝑒3
)

]
 
 
 
 
 
 
 

                                     (3.36) 

We shall now simplify (3.36) by doing the following: 
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(
𝑒1

3

3𝑒3
)

1
2

= (
𝐷𝑚

3

3 
3𝛽𝐷𝑚

3 𝜌1

4𝛺𝑚
2

)

1
2

= 
2𝛺𝑚𝑅1

1
2

3𝛽
1
2

                                                             (3.37𝑎) 

where, 

           𝑅1 = 
1

𝜌1
                                                                                                           (3.37𝑏) 

Also, 

(1 − 
5𝑒2

2

3𝑒1𝑒3
) =  

(

 
 

1 − 
5 (

8𝛼𝐷𝑚
2

3𝑚𝜋𝛺𝑚
2 )

2

3𝐷𝑚. 3𝛽𝐷𝑚
3 𝜌1

4𝛺𝑚
2

)

 
 

1
2

= 𝑅2

1
2                                                (3.37𝑐) 

where, 

          𝑅2 = (1 − 
1280(

𝛼2

𝛽
)

81(𝑚𝜋𝛺𝑚)2𝜌1
)                                                                             (3.37𝑑) 

We know that, 

 1 − 
𝑒2

√
3𝑒3
𝑒1

(1− 
5𝑒2

2

3𝑒1𝑒3
)

= 

(

 
 

1 − 
(

8𝛼𝐷𝑚
2

3𝑚𝜋𝛺𝑚
2 )

1
2

√3.
3𝛽𝐷𝑚

3

4𝛺𝑚
2 ..𝑅2

)

 
 

= (1 − 
512(

𝛼2

𝛽
)

27(𝑚𝜋𝛺𝑚)2𝜌1
)                   (3.37e) 

Therefore, we get 

 

1− 
𝑒2

√
3𝑒3
𝑒1

(1− 
5𝑒2

2

3𝑒1𝑒3
)

(1− 
2𝑒2

2

𝑒1𝑒3
)

 =  

(

 
1− 

16𝛼𝐷𝑚

9𝑚𝜋𝛺𝑚√𝐵𝑅2

1− 
512(

𝛼2

𝛽
)

27(𝑚𝜋𝛺𝑚)2𝜌1)

 = 𝑅3                                                            (3.37𝑓) 

From (3.36), we get 

                   𝜔𝑎(𝜆𝑆) =  𝜔𝑎𝑠 = (
2𝛺𝑚𝑅1

1
2

3𝛽
1
2

)𝑅2

1
2𝑅3                                                                     (3.38) 
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where, all the terms in (3.38) are evaluated at 𝜆 =  𝜆𝑆. Thus, we have evaluated the maximum 

displacement at static buckling, as in (3.38). We shall now determine the static buckling load and 

this is obtained by evaluating (3.29) at 𝜆 =  𝜆𝑆.To simplify the operation, we multiply (3.29) by 3 

and get, 

                   3𝜖 = 3𝑓1𝜔𝑎𝑠 +  3𝑓2𝜔𝑎𝑠
2 +  3𝑓3𝜔𝑎𝑠

3                                                            (3.39) 

We now evaluate terms at static buckling from (3.39), and get 

                 3𝜖 = 3(𝑓1𝜔𝑎𝑠 + 𝑓2𝜔𝑎𝑠
2 ) + 𝜔𝑎𝑠(3𝑓3𝜔𝑎𝑠

2 )                                                  (3.40) 

But from (3.31),                

      3𝑓3𝜔𝑎𝑠
2 = −𝑓1 −  2𝑓2𝜔𝑎𝑠                                                                             (3.41) 

On substituting (3.41) in (3.40), we get 

                 3𝜖 = 3(𝑓1𝜔𝑎𝑠 + 𝑓2𝜔𝑎𝑠
2 ) + 𝜔𝑎𝑠(−𝑓1 −  2𝑓2𝜔𝑎𝑠) 

            =  𝜔𝑎𝑠(3𝑓1 + 3𝑓2𝜔𝑎𝑠 − 𝑓1 −  2𝑓2𝜔𝑎𝑠) =  𝜔𝑎𝑠(2𝑓1 + 𝑓2𝜔𝑎𝑠) 

                         =  2𝑓1𝜔𝑎𝑠 (1 + 
𝑓2𝜔𝑎𝑠

2𝑓1
)                                                                        (3.42) 

On substituting for 𝑓1 and 𝑓2 in (3.42) from (3.30), we obtain, 

                   3𝜖 =  
2𝜔𝑎𝑠

𝑒1
(1 − 

𝑒2𝜔𝑎𝑠

2𝑓1
)                                                                            (3.43) 

If we substitute for 𝑒1 and 𝑒2 in (3.43) from (3.28b), we get 

                 3𝜖 =  
4𝛺𝑚(𝑅1𝑅2)

1
2𝑅3

3𝛽
1
2𝐷𝑚

[1 − 
8𝛼𝐷𝑚(𝑅1𝑅2)

1
2𝑅3

9𝑚𝜋𝛺𝑚𝛽
1
2

]                                     (3.44) 

But from (3.13a), we have 

                𝐷𝑚 = 
2𝜆𝑚2𝑎̅𝑚

𝛺𝑚
2

 

If we simplify the terms in the square bracket in (3.44), we get 

   𝛺𝑚
3 = 

9𝛽
1
2𝜆𝑆𝑚2𝑎̅𝑚𝜖

2(𝑅1𝑅2)
1
2𝑅3(1− 

8𝛼𝐷𝑚(𝑅1𝑅2)
1
2𝑅3

9𝑚𝜋𝛺𝑚𝛽
1
2

)

                                                             (3.45) 
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On substituting for 𝛺𝑚 at buckling in (3.45), we get 

(𝑚4 −  2𝜆𝑆𝑚
2 +  1)

3
2 =  

9𝛽
1
2𝜆𝑆𝑚

2𝑎̅𝑚𝜖

2(𝑅1𝑅2)
1
2𝑅3 (1 − 

8𝛼𝐷𝑚(𝑅1𝑅2)
1
2𝑅3

9𝑚𝜋𝛺𝑚𝛽
1
2

)

                          (3.46) 

Equation (3.46) gives an implicit equation for the evaluation of 𝜆𝑆. The dominant value of 𝜆𝑆 is 

ontained for 𝑚 = 1. 

Having initiated the static deformation which finally resulted in the determination of the static 

buckling load, 𝜆𝑆, we shall, in our next research work, discuss the dynamic deformation of the 

same column. 

RESULTS AND DISCUSSION 

Equation (3.46) gives an implicit equation for the evaluation of 𝜆𝑆. Sample codes written in Q-

basic programming language were able to obtain numerical values for the static buckling loads of 

the finite imperfect column, as we vary the imperfection factors, as shown in Table 1. Using Table 

1, a graph of the static buckling load against imperfection factors  is shown in Figure 1. We observe 

from Figure 1 that imperfection is a key factor in determining the buckling load of the column 

because as the imperfection factors increase, the static buckling load decreases and is in agreement 

with Chukwuchekwa (2017).  

Imperfection 

factor, āϵ 

Static Buckling Load, 𝝀𝑺 

 

0.01 0.895588 

0.02 0.866607 

0.03 0.846223 

0.04 0.829973 

0.05 0.816239 

0.06 0.804232 

0.07 0.793499 

0.08 0.783737 

0.09 0.774766 
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0.1 0.766442 

 

Table 1: Table showing the relationship between the Static buckling load, 𝝀𝑺 and the imperfection 

parameter, āϵ and using equation (3.46). 

 

Fig.1: Graphical plot showing the relationship between the Static buckling load, λS and the 

imperfection parameter, āϵ using equation (3.46). 

Results show that imperfection is a key factor in determining the buckling load of the column 

because as the imperfection factors increase, the static buckling load decreases.  

CONCLUSION 

The regular perturbation technique in asymptotic expansion of the relevant variables has been 

effectively utilized in analyzing the static buckling of a finite deterministically imperfect but 

viscously damped column resting on some quadratic–cubic nonlinear elastic foundations, but 

struck by a step load. With the help of Q-BASIC codes, numerical results obtained show that 

increase in imperfection of the column lowers the static buckling loads of the column. It is our 

contention that this same procedure can be used in the stability analysis of the dynamic buckling  

of the same column to ascertain the effects of light viscous damping and pre-static loads on the 

dynamic loads of the column. 
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