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Abstract 

In fuzzy mathematics fuzzy system reliability can be analysed by fuzzy sets. We can use various types 

of fuzzy sets for that analyzing the fuzzy system reliability but here we specially used intuitionistic 

fuzzy set theory. At first, TrIFNs and their arithmetic operations are introduced. Expressions for 

computing the fuzzy reliability of a series system, parallel system, series-parallel and parallel-series 

system following TrIFNs have been described. Here an imprecise failure to start of a truck is taken. To 

compute the imprecise failure of the above said system, failure of each component of the systems is 

represented by Trapezoidal Intuitionistic Fuzzy Number. This process can be utilise to measure the 

failure is various aspects like portfolio in stock market etc. The numerical expression also calculated 

and presented in this paper for the failure to start of a truck using TrIFN. 

Keywords: fuzzy set, IFN, intuitionistic fuzzy number, system reliability, TrIFN, trapezoidal 

intuitionistic fuzzy number. 

 
1. INTRODUCTION  

 

A fuzzy set in a universe X is defined by membership function that maps X to the interval [0, 

1] and therefore implies a linear, i.e. total ordering of the elements of X, one could argue that 

this makes them inadequate to deal with incomparable information. A possible solution, 

however, was already implicit in Zadeh’s [40] seminal paper in a footnote; he mentioned that 

“in a more general setting, the range of the membership function can be taken to be a suitable 

partially ordered set P.” In 1967, Goguen[17] formally introduced the notion of an L- fuzzy set 

with a membership function taking values in a lattice L. Another generalizations of fuzzy sets 

called interval valued fuzzy sets, apparently first studied by Sambue[27] who called them φ -

flou functions, serve to capture a feature of uncertainty with respect to the assignment of 

membership degrees by intervals in [0, 1] because assigning an exact number to an expert’s 

opinion is too restrictive, and that the assignment of an interval of values is more realistic. 

Finally intuitionistic fuzzy sets (IFS) were introduced in 1983 by K. T. Atanassov[1] as 

generalization of fuzzy sets. IFS theory basically defies the claim that from the fact that an 

element x belongs to a given degree say  A x to a fuzzy set A, naturally follows that x should 

not belong to A to the extent  1 A x , an assertion implicit in the concept of a fuzzy set. On 

the contrary, IFSs assign to each element of the universe both a degree of membership  A x  
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and one of non – membership  A x  such that     1A Ax x   , thus relaxing the enforced 

duality    1A Ax x    from fuzzy set theory. For each intuitionistic fuzzy set in X, we will 

call      1A A Ax x x      a hesitation margin or intuitionistic fuzzy index of x A  and 

it expresses lack of knowledge of whether x belongs to A or not. It is obvious that  0 1A x 

, for each x X  . The application of intuitionistic fuzzy sets instead of fuzzy sets means the 

introduction of another degree of freedom into a set description. Such a generalization of fuzzy 

sets gives us an additional possibility to represent imperfect knowledge what leads to 

describing many real problems in a more adequate way. 

 In this paper we represent  the basic concept of IFSs and IFNs, arithmetic operations between 

two Trapezoidal Intuitionistic Fuzzy Numbers (TrIFNs), expressions for finding the fuzzy 

reliability of a series and a parallel system using arithmetic operations on TrIFNs, presentation  

and calculation of the failure to start of a truck  using  intuitionitic fuzzy fault tree. 

2. BASIC CONCEPT OF INTUITIONISTIC FUZZY SETS 

Atanassov (1983)[1] presented the concept of IFS, and pointed out that this single value 

combines the evidence for ix X , but does not indicate evidence against ix X .An IFS 
i

A  in 

X is characterised by a membership function  
A
i x and a non -membership function  

A
i x . 

Here,  
A
i x  and  

A
i x are associated with each point in X, a real number in  0,1  with the 

value of  
A
i x  and  

A
i x  at X representing the grade of membership and non-membership 

of x in 
i

A .Thus, the closer the value of  
A
i x  to unity and the value of  

A
i x  to zero, the 

higher the grade of membership is, and the lower the grade of  non-membership of x. When 
i

A

is an ordinary set, its membership function (non-membership function) can take on only two 

values, 0 and 1. If    1
A
i x   and   0

A
i x   , the element x does not belong to 

i

A  , similarly, 

if   0
A
i x   and   1

A
i x  , the element x  does not belong to 

i

A  . An IFS becomes a fuzzy set 

i

A  when   0
A
i x   , but    0,1

A

i

i x x A    . 

2.1 Definition: Intuitionistic Fuzzy Set: 

Let a set X be fixed. An IFS 
i

A in X is an object having the for 

    , 0,1 , :
A A

i

i iA x x x x X   where    : 0,1
A
i x X   and    : 0,1

A
i x X  define the 

degree of membership and degree of non-membership respectively, of the element x X to 

the set 
i

A , which is a subset of X, for every element of x X ,    0 1.
A A
i ix x     
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2.2 Definition:  ,  -cuts: 

A set of  ,  -cuts, generated by IFS 
i

A  , where  , 0,1   is a set of fixed numbers such 

that 1   is defined as  

                                 
    

     
,

, , :

, , , 0,1

A A

A A

i i i

i i

x x x x X
A

x x
 

 

     

  
  

   
 

 

 ,  -cuts denoted by ,

i

A   ,is defined as the crisp set of elements x which belong to 
i

A  , at 

least to the degree    and which does belong  
i

A  to the degree  . 

2.3 Definition: Intuitionistic Fuzzy Number: 

An IFN 
i

A  is  

 an intuitionistic fuzzy sub-set of the real line 

 normal, i.e., there is an 0x   such that  0 1
A
i x    0 0

A
i x   

 Convex for the membership function  
A
i x i.e.  

         1 2 1 2 1 21 min , , , 0,1
A A A
i i ix x x x x x            

 concave for the non-membership function  
A
i x  i.e. 

         1 2 1 2 1 21 max , , , 0,1
A A A
i i ix x x x x x            

 

 

 

Fig. 1 Membership and non-membership functions of 
i

A  

 

 

 2.4 Definition: Trapezoidal intuitionistic fuzzy number: 

ISSN 2688-8300 (Print) ISSN 2644-3368 (Online) JMSCM, Vol.1, No.2, February, 2020

181 Journal of Mathematical Sciences & Computational Mathematics



A TrIFN 
i

A  is an IFN in R with the following membership function   
A
i x  and non 

membership function   
A
i x

 

 

1

1 1 1 1

1 1

1 1 1

1 1

1

0

A
i

x a

b a a x b

b x c
x

d x c x d

d c otherwise




   


 
 

  
 



   and  

1

/
1 1 1 1

1 1

/
1 1 1

/

1 1

0

1

A
i

b x

b a a x b

b x c
x

x c c x d

d c otherwise




   

  

 
  

 



 

Where / /

1 1 1 1 1 1a a b c d d      and    , 0.5
A A
i ix x    for    

A A
i ix x x    . 

This TrIFN is denoted by  / /

1 1 1 1 1 1 1 1, , , ; , , ,TrIFNA a b c d a b c d . 

 

Fig. 2 Membership and non-membership function of TrIFN 

 

3. SOME ARITHMETIC OPERATIONS OF INTUITIONISTIC FUZZY NUMBER 

BASED ON CUTS METHOD: 

 Properties 3.1 

 If TrIFN  / /

1 1 1 1 1 1 1 1, , , ; , , ,
i

A a b c d a b c d  and  0y ka k  , then 
i i

Y k A is a TrIFN 

 / /

1 1 1 1 1 1 1 1, , , ; , , ,ka kb kc kd ka kb kc kd . 

 If  0y ka k  , then 
i i

Y k A is a TrIFN  / /

1 1 1 1 1 1 1 1, , , ; , , ,kd kc kb ka kd kc kb ka . 

 

 Properties 3.2 

         If  / /

1 1 1 1 1 1 1 1, , , ; , , ,
i

A a b c d a b c d and  / /

2 2 2 2 2 2 2 2, , , ; , , ,
i

B a b c d a b c d are two TrIFN then 

i i i

C A B  is also TrIFN. 

                             / / / /

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2, , , ; , , ,
i i

A B a a b b c c d d a a b b c c d d         
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    Example 3.2.1: let us consider two TrIFNs  3,4,5.5,6;2,4,5.5,7
i

A   and 

 2,4.5,5,6;1,4.5,5,7
i

B  . Then addition                           is defined by 

 5,8.5,10.5,12;3,8.5,10.5,14
i i

A B   with membership and non-membership functions as 

follows, 

            

5

5 8.53.5

1 8.5 10.5

12 10.5 12

1.5

0

i i

A B

x

x

x
x

x x

otherwise





  


 
 

  




          and       

8.5

3 8.55.5

0 8.5 10.5

10.5 10.5 14

3.5

1

i i

A B

x

x

x
x

x x

otherwise





  


 
 

  




                

 Properties 3.3 

      If  / /

1 1 1 1 1 1 1 1, , , ; , , ,
i

A a b c d a b c d and  / /

2 2 2 2 2 2 2 2, , , ; , , ,
i

B a b c d a b c d are two TrIFN then 

i i i

P A B is an approximated TrIFN. 

                             / / / /

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2, , , ; , , ,
i i

A B a a b b c c d d a a b b c c d d
 

 

Fig. 3 Membership and non-membership functions for product of two TrIFNs
 

 

Example 3.2.1: let us consider two TrIFNs  2,3, 4.5,5;1,3, 4.5,6
i

A   and

 3,4.5,5,6;2,4.5,5,7
i

B  . Then addition is defined by 

 6,13.5,22.5,30;2,13.5,22.5,42
i i

A B   with membership and non-membership functions as 

follows, 
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                                  

 

 

6 36 6 6

6 13.53

13.5 22.51

22.5 308 64 0.5 30

1

0

i i

A B

x

x

x
x

xx

otherwise



    


 
  

 
    





 

And                            

 

 

9 81 20 13.5

2 13.510

1 13.5 22.5

22.5 4216.5 272.25 12 22.5

6

0

i i

A B

x

x

x
x

xx

otherwise



   


 
  

 
    





 

4. IMPRECISE RELIABILITY OF SERIES AND PARALLEL SYSTEMS USING 

ARITHMETIC OPERATIONS OR TRAPEZOIDAL INTUITIONISTIC FUZZY 

NUMBERS: 

 

Here, we present the expressions for evaluation of the imprecise reliability of a series and a 

parallel system where the reliability of each component of the systems is represented by a 

TrIFN. 

 Series system 

Let us consider a series system consisting of n components, as shown in Figure 4. The 

intuitionistic fuzzy reliability of 
i

ssR  the series system shown below can be evaluated by using 

the expression as follows: 

    / / / /
1 2 11 12 13 14 11 12 13 14 21 22 23 24 21 22 23 24....... , , , ; , , , , , , ; , , ,

i i i i

ss nR R R R r r r r r r r r r r r r r r r r   

                                                                             

 / /

1 2 3 4 1 2 3 4........................ , , , ; , , ,n n n n n n n nr r r r r r r r  

It can be approximated to a TrIFN as 

                                 
/ /

1 2 3 4 1 2 3 4

1 1 1 1 1 1 1 1

, , , ; , , , ,
n n n n n n n n

j j j j j j j j

j j j j j j j j

r r r r r r r r
       

 
  
 
         

Where  / /

1 2 3 4 1 2 3 4, , , ; , , ,
i

j j j j j j j j jR r r r r r r r r  is an intuitionistic fuzzy reliability of the jth 

component for j=1,2,......,n. 
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Fig. 4 Diagram of a series system 

 

 Parallel system: 

Let us consider a parallel system consisting of n components, as shown in Figure 5. The fuzzy 

reliability 
i

psR of the parallel system shown below can be evaluated by using the expression as 

follows: 

                             / /

11 12 13 14 11 12 13 14

1

1 1 1 1 , , , ; , , , ...........
ni i

ps j

j

R R r r r r r r r r


          
  

                                                                                       / /

1 2 3 4 1 2 3 41 , , , ; , , ,n n n n n n n nr r r r r r r r 


 

It is an approximated to a TrIFN, Where  / /

1 2 3 4 1 2 3 4, , , ; , , ,
i

j j j j j j j j jR r r r r r r r r  is an intuitionistic 

fuzzy reliability of the jth component for j=1,2,......,n. 

                                                 

                                                       
 

Fig. 5 Diagram of a parallel system 

 

 Parallel-series System : 

Consider a parallel-series system consisting of m branches connected in parallel and  each 

branch contains n components as shown in Fig.6.The fuzzy reliability 
i

pssR of the parallel-series 

system shown in Fig.6 can be evaluated as follows: 

                               
1 1

1 1
m ni i

pss ki

k i

R R
 

  
    

  
   
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/

1 1 1 1 1 1 1 1 1 1 1

1 1 ,1 1 ,1 1 ,1 1 ;1 1 ,1 1 ,1 1 ,1 1
n m n m n n n m n m n

ki ki ki ki ki ki ki

i k i k i i i k i k i

x y z w x y z
          

                          
                                         

                          
          

/

1 1 1 1 1

m m m m n

ki

k k k k i

w
    

   
   
   

    

Where  / /, , , ; , , ,
i

ki ki ki ki ki ki ki ki kiR x y z w x y z w  represents  the reliability of the ith component at 

kth branch. 

                               
 

Fig. 6 Parallel-Series system 

 

 Series-parallel System: 

Consider a series-parallel system consisting of n stages connected in series and each stage 

contains m components as shown in Fig.7.The fuzzy reliability 
i

spsR of the series-parallel system 

shown in Fig.5 can be evaluated as follows: 

                                                            
1 1

1
n mi i

sps ik

k i

R R
 

  
   

  
   

/

1 1 1 1 1 1 1 1 1 1 1 1 1

1 , 1 , 1 , 1 ; 1 , 1 , 1
n m n m n m n m n m n m m

ik ik ik ik ik ik ik

k i k i k i k i k i k i i

x y z w x y z
            

                           
                                   

                           
            

/

1 1 1

, 1
n n m

ik

k k i

w
  

    
     
     

  

 

Where  / /, , , ; , , ,
i

ik ik ik ik ik ik ik ik ikR x y z w x y z w  represent the reliability of the ith component at kth 

stage. 
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Fig. 7 Series-Parallel systems 

           

5. Calculation of system failure using trapezoidal intuitionistic fuzzy number: 

Failure to start a truck depends on different facts. The facts are battery low charge, ignition 

failure and fuel supply failure. There are two sub factors of each of facts. The fault-tree of 

failure to start of truck is shown in the figure 8. 

i

fsF   represents the system failure to start of truck. 

i

blcF  represents the failure to start of truck due to battery low charge. 

i

ifF  represents the failure to start of truck due to ignition failure. 

i

fsfF  represents the  failure to start of truck due to fuel supply failure. 

i

lbfF  represents the  failure to start of truck due to low battery fluid. 

i

bisF  represents the  failure to start of truck due to  battery internal short. 

i

whfF  represents the  failure to start of truck due to  wire harness failure. 

i

spfF  represents the  failure to start of truck due to  spark plug failure. 

i

fifF  represents the  failure to start of truck due to  fuel injector failure. 

i

fpfF  represents the  failure to start of truck due to  fuel pump failure. 

The intuitionstic fuzzy failure to start of a truck can be calculated when the failures of the 

occurrence of basic fault events are known. Failure to start of a truck can be evaluated by using 

the following steps. 
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Fig. 8: Fault-tree of failure to start of a truck 

 Step 1. 

1 1 1
i i i

blc lbf bisF F F
  

     
  

 

1 1 1
i i i

if whf spfF F F
  

     
  

                                                                           (5.1.1) 

1 1 1
i i i

fsf fif fpfF F F
  

     
  

 

 Step 2. 

1 1 1 1
i i i i

fs blc if fsfF F F F
   

       
   

                                                             (5.1.2) 

 Result of start to failure of truck using TrIFN : 

Numerical of starting failure of a truck using fault tree analysis with intuitionistic fuzzy failure 

rate. The components failure rates as TrIFN are given by  

   0.02,0.03,0.04,0.05;0.01,0.03,0.04,0.06 , 0.03,0.04,0.06,0.07;0.02,0.04,0.06,0.08
i i

lbf bisF F 

 

   0.03,0.04,0.05,0.06;0.02,0.04,0.05,0.07 , 0.03,0.04,0.06,0.07;0.02,0.04,0.06,0.08
i i

whf spfF F 

 

   0.06,0.07,0.08,0.09;0.04,0.07,0.08,0.1 , 0.04,0.06,0.07,0.08;0.03,0.06,0.07,0.09
i i

fif fpfF F 

 

Using (5.1.1) in the step-1 we have the following results 

 0.0494,0.0688,0.0976,0.1165;0.0298,0.0688,0.0976,0.1352 ,
i

blcF   

 0.0591,0.0784,0.1070,0.1258;0.0396,0.0784,0.1070,0.1444 ,
i

ifF   
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 0.0976,0.1258,0.1444,0.1628;0.0688,0.1258,0.1444,0.1810
i

fsfF   

using (5.1.2) in the second and final step ,we get the failure to start of truck, calculated fuzzy 

failure to start of a truck as shown in the figure 9,represented by the following  TrIFN 

 0.1928758071,0.2497668751,0.3105205581,0.353383808;0.1323263895,0.2497668751,0.3105205581,0.3940031613
i

F fs       

                            

                                   Fig 9: TrIFN representing the system failure to start of a truck   

                    

6. CONCLUSION: 

In this paper, we proposed a definition of IFN according to the approach of fuzzy number 

presentation. On the bases of the intuitionistic fuzzy  ,  cut method some arithmetic 

operations of the proposed TrIFN are also evaluated. Here, a method to analyse system 

reliability, which is based on the IFS theory, has been presented, where the components of the 

system are represented by TrIFNs. Here we analyse the fuzzy reliability of the series system 

and the parallel system. An intuitionistic fuzzy fault tree is used to analyse the failure of starting 

of a truck. The major advantage of using IFSs over fuzzy sets is that IFSs separate the positive 

and the negative evidence for the membership of an element in a set. Our approaches and 

computational procedures may be efficient and simple to implement for calculation in an 

intuitionistic fuzzy environment for all fields of engineering and science where impreciseness 

occur.  
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