
A BRIEF IDEA ON THE HOMOMORPHIC ENCRYPTION FOR DATA

SECURITY

1Sabarna Ghosh Dastidar, 1 Sayantan Dasgupta, 1Salini Bhattacharyya, 1Somasree

Majumder, 2Pritha Ghosh, 2Renaissance Adhikari, 1Ahan Bhattacharjee, 1Soumendu

Bhattacharya, 3Biswadip Basu Mallik

1Department of Electronics and Communication Engineering

Institute of Engineering & Management

D1 Management House, Salt Lake, Sector V, Kolkata-700091, West Bengal, India.

2Department of Electrical Engineering

Institute of Engineering & Management

D1 Management House, Salt Lake, Sector V, Kolkata-700091, West Bengal, India.

3Department of Basic Science and Humanities

Institute of Engineering & Management

D1 Management House, Salt Lake, Sector V, Kolkata-700091, West Bengal, India.

Corresponding author: gdsabarna353@gmail.com

Abstract

We have stepped into a world of undeniable data breach fatigues. Thus to ensure data security, encryption

schemes come into action, one such highly talked about encryption nowadays is “Homomorphic

Encryption” which is mainly used to compress data for their easy storage involving secure transmission and

processing on cloud without compromising on privacy since special keys are needed for primary encryption

and final decryption. Homomorphic encryption allows operation on two ciphertexts to give an encrypted

(coded) result which when decrypted (decoded) maps to result of the operation, if it would have been on

plaintext. It can be either multiplicative like the RSA or additive like the Pallier cryptosystem. Here we also

focused on ideal lattice based public key encryption scheme which is almost bootstrappable. Multihop

homomorphic encryption also has vital roles to play here. A strong homomorphic encryption is one which

is resistant to all attacks using various algorithms. Thus our main objective is to allow encrypted computing

on data, minimize memory usage and to save energy and time. Our presentation will try to focus on the

researches done so far and also on the success rates of the scheme which is affecting the real world.

Keywords: Homomorphic, Public Key Encryption, Decryption, RSA, Pallier Cryptosystem, Cloud, Ideal

Lattice, Bootstrappable

INTRODUCTION:

ISSN 2688-8300 (Print) ISSN 2644-3368 (Online) JMSCM, Vol.1, No.2, February, 2020

239 Journal of Mathematical Sciences & Computational Mathematics

mailto:gdsabarna353@gmail.com

Fully homomorphic encryption (FHE) is a cryptographic primitive which facilitates arbitrary

computations on encrypted data. It has been dubbed the holy grail of cryptography, an exclusive

goal which could solve the IT world’s problems of security and trust. The development of fully

homomorphic encryption is a revolutionary advance, greatly extending the scope of the

computations which can be applied to process encrypted data homomorphically. We know that

the development of cloud storage and computing platform allows users to outsource storage and

computations on their data, and allows business to offload the task of maintaining data-centers,

yet, concerns over loss of privacy and business value of private data is an overwhelming barrier to

the adoption of cloud services by consumers and business alike. But, after Craig Gentry [1]

published his idea in 2009, the cloud can perform the computations on behalf of the user and return

only the encrypted result with the help of fully homomorphic encryption and thus data can remain

confidential while it is processed, enabling useful tasks to be accomplished with data residing in

untrusted environments and research in this area exploded with regard to improving the schemes,

implementing and applying them. The main purpose of this scheme is to allow one to evaluate

arbitrary circuits over encrypted data without being able to decrypt. FHE has numerous

applications like, it enables private queries to a search engine, i.e. the user submits an encrypted

query and the search engine computes a succinct encrypted answer without ever looking at the

query clearly. More broadly, FHE improves efficiency of secure multiparty computation. In highly

regulated industries, such as health care, homomorphic encryption can be used to enable new

services by removing privacy barriers inhibiting data security. Here, we focused on the technology

constructed by the Craig Gentry, which begins, with a somewhat homomorphic “bootstrappable”

encryption scheme working while the function is the scheme’s own decryption function and then

we will discuss the methodology of Craig Gentry, how bootstrappable encryption gives fully

homomorphic encryption through recursive self-embedding without reducing the depth of the

decryption circuits of the arbitrary circuits that the scheme can evaluate and this construction

makes use of hard problems on ideal lattices. Our paper will provide a great help to the beginners

for starting a massive study on homomorphic encryption.

BACKGROUND OF CRAIG GENTRY’S FHE SCHEME:

In order to develop the application for this scheme, several software libraries implementing the

latest schemes of Fully Homomorphic Encryption were found. HElib [3], the most complete,

portable and well maintained, written in C and C++ implements a FHE scheme including both the

BGV scheme with modulus switching and bootstrapping, SIMD operations and the permutation

network optimisation. It also supports several other speed enhancements such as multi-threading

and proposes an easy access to tweaking the many optimisations. But, for quite low level of HElib

library, PhD student Grant Frame released open source Integrated Development Environment

(IDE) for HElib, called HEIDE (2015) which uses python. Louis Aslett released “An R package

for fully homomorphic encryption” to implement Fan and Vercauteren Scheme (2015). Then, in

January 2016, WejDai from Vernam Group at Worcester Polytechnic Institute developed a source

FHE library called CuHE to implement Doroz-Hu-Sunar (DHS) SwHE scheme based on the

ISSN 2688-8300 (Print) ISSN 2644-3368 (Online) JMSCM, Vol.1, No.2, February, 2020

240 Journal of Mathematical Sciences & Computational Mathematics

Lopez-Tromer-Vaikuntanathan (LTV) scheme [3]. Krypto was another open source library,

released in November 2015, by the company kryptonostic. Leo Ducas and Daniele Micciancio

released the open source FHEW library in January 2015 which achieves a 1-bit NAND gate

homomorphic encryption in less than asecond with bootstrapping. The last library found was

released by Jean-Sebas tien Coron in 2012 and implements the DGHV FHE scheme in python with

the SAGE mathematical library. So, these software libraries actually serve as a proof of practical

use of their respective scheme. Indeed, some schemes such as Gentry’s original FHE scheme could

never be implemented due to its space complexity.

Craig Gentry’s initial FHE scheme was abbreviated by SwHE, in which ciphertexts have some

“noise”, coming from randomness added for security purposes. The noise of a ciphertext grows

with each additional operation performed on this one. The ciphertext can’t be decrypted anymore

once the noise grows above a certain threshold. To make of his SwHE scheme a FHE scheme,

Gentry developed a technique called bootstrapping which decrypts and recrypts the ciphertext at

each operation to reduce its associated noise. This allows an infinite amount of operations to be

performed on ciphertexts. However, each bootstrapping is slow so performing an addition or

multiplication will always be slow. Since then, many improvements have been made to make a

more efficient, usable FHE scheme.

Apart from several small enhancements such as a reduction of the size of FHE keys, there are three

main improvements since Gentry’s first FHE scheme. The first one is the support of SIMD (Single

Instruction Multiple Data) operations. Here, a plaintext is not a single value but a vector of

plaintext elements, before being encrypted and this encrypted vector results in a “packed”

ciphertext. Thus, using SIMD operations, this improvement allows to perform an operation on

multiple entries at once and reduces either the time cost associated with bootstrapping or the

number of levels needed in case of a leveled FHE. The second enhancement is that if one needs to

perform an operation with the element of one plaintext vector at the position 2 and that of the other

at the position 3, it spends significant amount of time to unpack and then repack the ciphertexts,

but the solution came by bringing the concept of permutation network allowing to permute

elements without needing to unpack and repack everything which provides a great flexibility and

efficiency to the scheme. The third one is the modulus switching introduced with BGV scheme,

aiming to provide an alternative to the slow bootstrapping. In this scheme, there is a predefined

number of levels, proportional to the maximum number of operations to be performed on the

ciphertext. This one is actually proportional to the accumulated noise added with each operation.

The number of multiplication operations to be performed on a ciphertext should determine the

number of levels. But for a high number of levels, bootstrapping becomes faster than the BGV

scheme.

A BRIEF DISCUSSION ON RSA CRYPTOSYSTEM AND HOMOMORPHIC

ENCRYPTION:

ISSN 2688-8300 (Print) ISSN 2644-3368 (Online) JMSCM, Vol.1, No.2, February, 2020

241 Journal of Mathematical Sciences & Computational Mathematics

The first homomorphic encryption scheme was the basic RSA [5] invented by Rivest, Adleman

and Shamir which is multiplicative, i.e. for two given ciphertexts 1= π1
e mod N and 2= π2

e mod

N, where, e is sometimes referred to as an encryption exponent or public exponent. Then, a

ciphertext can be computed such that that  1.2 = (π1.π2)
e mod N that encrypts the product of

original plaintexts and here, these plaintexts are large primes, so, Euler’s theorem, Euler’s phi

function and Chinese remainder theorem plays a vital role in this cryptosystem. It must be

mentioned that RSA cryptosystem is not meant to replace symmetric ciphers because of being

relatively slower than ciphers like AES (Advanced Encryption Standard, a subset of the Rijndael

block cipher developed by two Belgian cryptographers, Vincent Rijmen and Joan Daemen) and so

it is less commonly used to directly encrypt user data. More often, RSA passes encrypted shared

keys for symmetric key Cryptography which in turn can perform bulk encryption-decryption

operations at much high speed that’s why it is widely used especially for key transport and digital

signatures. But basic RSA is deterministic and so it is not semantically secure. Then the

possibilities of fully homomorphic encryption scheme were introduced for the first time by Rivest,

Adleman and Dertouzos which is called a privacy homomorphism and Gentry suggested a solution

to it. But, before entering into this part of discussion, we should know that a homomorphic public

key encryption scheme ξ has four algorithms [2].-

1. KeyGenξ , which takes a security parameter  and a positive integer d as input and gives a

triple of secret key, public key and evaluation key(sk, pk, evk)

2. Encryptξ , which takes pk(d) and a plaintext π from the set(π1, π2,…..,πt) as input and outputs

a ciphertext, 

3. Decryptξ , which takes sk(d) and a ciphertext,  as input and outputs Decryptξ(sk,)

4. Evaluateξ , which takes pk, a circuit C from a permitted set Cξ of circuits and a tuple of

ciphertexts = (1, 2,..., t) and outputs a ciphertext ѱ.

Now, the definition says that, if,  Evaluateξ(pk, C,), then Decryptξ(sk, )= C (π1, π2,… πt)

Now, there are three definitions about Homomorphic Encryption Scheme.

1. ξ is homomorphic for circuits in Cξ if ξ is correct for Cξ and Decryptξ can be expressed as

a circuit Dξ of size poly().

2. ξ is fully homomorphic if it is homomorphic for all circuits.

3. A family of schemes {ξ(d): dϵ Z+} is leveled fully homomorphic if they all use the same

decryption circuit, ξ(d) is homomorphic for all circuits of depth at most d (that use some

specified set of gates ), and the computational complexity of ξ(d)’s algorithm is

polynomial in , d, and (in the case of Evaluate) the size of C.

A BASIC INTRODUCTION TO BOOTSTRAPPABLE ENCRYPTION:

ISSN 2688-8300 (Print) ISSN 2644-3368 (Online) JMSCM, Vol.1, No.2, February, 2020

242 Journal of Mathematical Sciences & Computational Mathematics

Following Gentry, we can construct homomorphic encryption for circuits of any depth from one

that is capable of evaluating just a little more than its own decryption circuit. Here, the research

started with a public key encryption scheme ξ1 which uses ideal lattices and is homomorphic for

shallow circuits. A ciphertext ѱ has the form v + x where v is in ideal lattice and x is an ‘error’ or

‘offset’ vector encoding the plaintext π. Now, ξ1 is homomorphic for the shallow circuits only

because it causes a decryption error where the error vector grows with the ring operations using

addition and especially multiplication. To prevent this, we could refresh a ciphertext if we could

completely decrypt it, so the new ciphertext will encrypt same plaintext but its noise will be small.

Here, we must mention that decryption itself is a good reduction algorithm but we can’t hand over

the secret key. Now, this noise should remain below a certain threshold to perform the decryption

correctly. So, this process is such a type of process where we publish the encryptions of the secret

key bits and the process will evaluate the scheme’s own decryption circuit homomorphically.

Applying this setting and repeating this process we can evaluate the circuits of any arbitrary depth

by keeping the error small with no requirements of secret key and this is the idea behind

bootstrapping.

Now, for getting bootstrappable feature, an encryption is needed to be able to evaluate not only its

decryption circuit but also slightly augmented versions of it, so that we can perform non-trivial

operations on plaintexts and make progress through a circuit. But, here we have to be familiar with

one more algorithm i.e. Augmentξ(δ) [2], which takes pk(δ), a circuit Cδ of depth at most δ with

gates in  and a tuple of input ciphertexts δ (each input ciphertexts should be under pkδ). The

algorithm augments Cδ with Dξ ; which is called the resulting circuit C†
δ-1.

Now the mathematical working of the bootstrappablity can be understood by considering the

following algorithm where the plaintext space is P and Dξ is a Boolean circuit in Cξ . Let, (sk1, pk1)

and (sk2, pk2) be two ξ key-pairs, 1 be an encryption of πP under pk1 and sk1j be an encryption

of j-th bit of the first secret key sk1 under the second public key pk2 . Now, the concept of

bootstrapping describes a Recrypt [1] step in the algorithm that allows for the more elegant

decryption inside encryption. So, for the algorithm we considered here for example, Recrypt takes

those things as input and outputs an encryption of π under pk2 .

Recrypt (pk2 , Dξ , (sk1j), 1).

Set 1j  Encryptξ (pk2 , 1j)

Set 2  Evaluateξ (pk2 , Dξ ,((sk1j), (1j)))

Output 2

Here, the remark is that the Recrypt algorithm allows the owner of sk1 to generate a tag that enables

an untrusted proxy to convert an encryption of π under pk1 to an encryption of π under pk2 , but

not the reverse.

Now, there are some theorems related to bootstrappablity [1], which are as following.-

1. One can construct a (semantically secure) family {ξ(d)} of leveled fully homomorphic

encryption schemes from any (semantically secure) bootstrappable encryption scheme

ISSN 2688-8300 (Print) ISSN 2644-3368 (Online) JMSCM, Vol.1, No.2, February, 2020

243 Journal of Mathematical Sciences & Computational Mathematics

ξ . But, one drawback lies in this theorem i.e. ξ(d) is merely leveled fully homomorphic

because of its dependence on d, and when it is independent of d, the scheme will be

fully homomorphic.

2. Let, Cξ be a set of circuits with respect to which ξ is homomorphic. We say that ξ is

bootstrappable with respect to  if Dξ ()  Cξ . It gives the definition of Bootstrappable

Encryption.

3. Let ξ be bootstrappable with respect to a set of gates  . Then the family {ξ(d)} is leveled

fully homomorphic (for circuits with gates in ).

4. Let A be an algorithm that breaks the semantic security of with advantage. Then, there

is an algorithm B that breaks the semantic security of ξ with probability at least

/l(d+1) , and time poly (l, d) times that of A, where Dξ takes a secret key and ciphertext

as input formatted as elements of Pl() . Here we denote the set of g-augmented

decryption circuits, gate gϵ  , by Dξ().

If ξ is KDM-secure [1], the public key can be shorten to include pk and an encryption of sk under

pk, a “self-loop” rather than an acyclic chain of encrypted secret keys.

A LITTLE INTRODUCTION TO IDEAL-LATTICE CONCEPT:

This concept comes from Lattice cryptography which is one of the latest developments in

theoretical cryptography. Now, the most interesting fact is that a lattice can be created with

interesting algebraic structure which enables cryptographers to create cryptosystems that can do

things which were previously impossible. A fully specification of an n-dimensional lattice contain

n2 entries, which is huge. So, a very popular approach came i.e. the application of “ideal lattices”,

which are additionally symmetric and here we can specify a public key using only n entries. The

notion of bootstrappablity gives us a new angle on constructing FHE. It suggests looking at the

encryption schemes whose decryption algorithms have low circuit complexity. But, on the other

side, encryption schemes using lattices or linear codes have very simple decryption algorithms

typically dominated by a matrix-vector multiplication, an operation in NC1. It is not enough only

to minimize the circuit complexity of decryption but we also should maximize the evaluative

capacity of the scheme to evaluate its own (augmented) decryption circuit. While an additively

homomorphic encryption scheme can easily be constructed from ordinary lattices, a scheme is

needed having both additive and multiplicative homomorphism to evaluate arbitrary circuits and

this thinking leads us to focus on ideal lattices. The basic introduction will be like that, an abstract

construction is implemented using a polynomial ring and ideal lattices [1] i.e. let R=Z[x]/f(x),

where f(x)  Z[x] is monic and of degree n. Now, we view an element v R both as a ring element

and as a vector v Zn . The ideal (v) generated by v directly corresponds to the lattice generated

by the column vectors {v  xi mod f(x): i  [0, n-1]}, this is called rotation basis of ideal lattice

(v). An ideal I  R need not be principal- i.e. have a single generator- and a basis BI of I need not

be a rotation basis. The Hermite normal form of a lattice I is an upper triangular basis that can be

efficiently computable from any other basis of I which makes it well-suited to be a public key. The

main application of this concept is that they are used to design a wide range of cryptographic

ISSN 2688-8300 (Print) ISSN 2644-3368 (Online) JMSCM, Vol.1, No.2, February, 2020

244 Journal of Mathematical Sciences & Computational Mathematics

algorithms by using computationally hard lattice problems to design robust cryptographic

functions and in cryptanalysis also and its security solely relies on the hardness of finding

approximate solutions to lattice problems.

ANALYSIS OF HOMOMORPHIC ENCRYPTION SUPPORTED BY HElib SOFTWARE

LIBRARY:

The methods for analysis of homomorphic encryption scheme can be categorized as the limits of

HElib and its potential, settings of level parameter and logic gates and their complexity, designing

combinational and sequential circuits, binary multiplication operation, average operation,

Euclidean division etc. But, here we discuss some parts of this concept very briefly as follows.

HElib supports homomorphic subtraction and negation operation besides addition and

multiplication operations on ciphertexts and these operations are done in the field Fpd [3] where p

is prime and results are modulo p and it will be meaningful if r < p. The solution to unlock the

potential from these operations is to implement binary logic compatible with FHE from the ground

up. Addition and multiplication operations actually implement XOR and an AND logic gates and

there is one another logic gate i.e. NOT, and we are able to derive all other logic gates using these

three gates. Now, multiplication operation adds a significant amount of noise to the ciphertext

which increases time complexity of a homomorphic function. So, to prevent this, HElib supports

a leveled homomorphic encryption, consisting in setting a level parameter L at the key generation

stage, which is proportional to the maximum number of homomorphic encryptions acted on a

ciphertext, so that, if L is lower, operations will be faster. So, we need to avoid those logic gates

also, which use multiplication operations (i.e. AND, NAND, OR, NOR gates) as per possibility.

HElib supports one more operation, i.e. SIMD mode which requires N integer values to be

encrypted and packed into a ciphertext and the number of plaintext slots N depends on level

parameter L and security parameter k. The packed ciphertexts are used such that each slot is

independent from the other ones and these grow larger with the increase of L and K.

IMPLEMENTATION OF HOMOMORPHIC ENCRYPTION:

Homomorphic encryption has a huge implementation.

1. Homomorphic encryption mainly consists of 4 steps Key Generation Encrypt Decrypt and

Evaluate.

2. In the core Application Program Interface or API development where the source file

provides complex features and several features , the homomorphic encryption is

incorporated .Here ciphertext are stored in the unordered or in the dictionary format where

firstly it simplifies the code and secondly it requires less storage.

3. It is even implemented in the logic gates {and, or, nor) using the additive and the null

operators. Here it creates n copies of the bits and left shifts the copied rows with the binary

numbers and overwrites on the respective result.

ISSN 2688-8300 (Print) ISSN 2644-3368 (Online) JMSCM, Vol.1, No.2, February, 2020

245 Journal of Mathematical Sciences & Computational Mathematics

4. In Fully Homomorphic Encryption or FHE we apply functions on the encrypted data where

it allows a secret key to be issued using a master key dependent on function

f(x).Obscuration is the scheme which raises the security of the encrypted data. This also

finds an application in the consumer piracy allowing the function to be computed and

choose the advertisement for each user while the advertising remains encrypted.

5. It is also implemented in the BGV scheme along with optimum utilization of ciphertext

packing.

6. A homomorphic encryption is bootstrappable if its homomorphic entity includes the all the

augmented and decryptive circuits. A homomorphic encryption scheme can be transformed

into a compact leveled homomorphic scheme.

7. It even has an implementation in efficient encoding of integers for arithmetic operations,

choice of parameters, mean of variance computation, potential improvements and

optimization of the communication with cloud. We can even explain the choice of

parameters in the scheme.

8. Somewhat homomorphic encryption [8] is done using the computer algebra. It has a wide

application in the development of cloud storage.

9. Cryptography is based on the ideal lattice concept where interrelated problems are on the

lattices and we can learn with and from the errors.

10. Homomorphic encryption is a bitwise encryption in which bits are transformed into partial

n bit string pack. Cloud security provide valuable security to users and the system provide

the data to the cloud to do any other computation .It is also implemented in the machine

learning applications like logistic regression where data are encrypted bitwise rather than

its elements.

APPLICATIONS OF FHE:

This part of the paper throws light upon the innumerable applications of the different tastes of

Homomorphic Encryption. Some need fully homomorphic encryption which can compute

anything on encrypted data while, on the other hand, some just need somewhat homomorphic

encryption which is more restricted.

It is basically divided into two parts among which the first one signifies the current scenario and

the applications that are presently feasible and the second one emphasizes the constructions where

homomorphic encryption is the building block.

Practical Applications of FHE: Although still slow, homomorphic encryption has been

proposed for many different practical uses. This part lists those applications that are conceivable

with the present technology.

1. Consumer Privacy in Advertising: These days many users are concerned about the privacy

and security of their data, in this case their preferences and location. This problem has been faced

in many different methods.

ISSN 2688-8300 (Print) ISSN 2644-3368 (Online) JMSCM, Vol.1, No.2, February, 2020

246 Journal of Mathematical Sciences & Computational Mathematics

In one approach, Jeckmans et al. [6] proposed that a user wants recommendations for a product

based on the tastes of the user’s friends with the condition of confidentiality. The proposed system

applies homomorphic encryption to allow a user to obtain recommendations from friends without

the identity of the recommender being revealed.

In some other approach Armknecht and Strufe [7] wrote that a recommender system builds upon

a very simple but highly efficient homomorphic encryption scheme where a user gets encrypted

recommendations without the system being aware of the content.

2. Medical Applications: In this field Naehrig et al. [4] brought in front that a patient’s medical

information is continuously uploaded in encrypted form to a service provider where the user is the

data owner, so the data is encrypted under the user’s public key and only the user can decrypt.

Then the service provider computes on the encrypted data.

3. Data Mining: Data mining from large data sets, on one hand, serves the advantage of great

value but in return affects the user’s privacy. The scheme actually uses functional encryption which

is often considered as a common confusion.

4. Financial Privacy: In the case of financial privacy homomorphic encryption is used to upload

both the data and the algorithm in encrypted form in order to outsource the computations to a cloud

service. Although, homomorphic encryption is not known for keeping the algorithm secret, but is

rather part of obfuscation research.

5. Forensic Image Recognition: The police and the other law enforcement agencies use weapons

similar to this to detect illegal images in a hard drive, network data streams and other data sets.

Here a somewhat homomorphic encryption scheme can be used where the company’s legitimate

network traffic stays private while at the same time the police database is encrypted where the later

in turn is compared by the company with the hashed and encrypted picture data stream.

Homomorphic Encryption Schemes as Building Blocks: Homomorphic Encryption Schemes

can be used to construct cryptographic tools such as zero knowledge proofs, signatures, MACs

1. Zero Knowledge Proofs: Gentry [1] told that homomorphic encryption can also be used in the

construction of Non-Interactive Zero Knowledge (NIZK) proofs of small size. A standard NIZK

proof is attached to prove that each ciphertext encrypts either 0 or 1 and that the output of the

evaluation encrypts 1.

2. Outsourcing Storage and Computations: Perhaps the most direct application of FHE is for

outsourcing storage and computation without revealing sensitive information. Considering a small

company trying to move its computing facilities to the cloud, but that is worry of the cloud provider

having access to the company’s confidential information. FHE provides an elegant solution to this

conundrum. The company can keep the information in the cloud in encrypted form, and the cloud

ISSN 2688-8300 (Print) ISSN 2644-3368 (Online) JMSCM, Vol.1, No.2, February, 2020

247 Journal of Mathematical Sciences & Computational Mathematics

provider can process information in this form and send only the processed result back to the

company to be decrypted.

3. PIR and other private queries: Another direct application of FHE is to enable private queries

to a database or a search engine. The simplest such example is private information retrieval, where

a server is holding a large database and a client wants to retrieve one record of this database without

the server learning which record was retrieved. FHE lets the user encrypt the index of the record

that it wants to retrieve. The server can evaluate the function on the encrypted index, returning the

result to the client, who can decrypt it and obtain the plaintext record.

4. Signatures: The homomorphic signature scheme can evaluate arbitrary circuits with maximal

depth d over signed data and homomorphically produce a short signature which can be verified by

anybody using the public verification key. This work also introduces the notion of Homomorphic

Trapdoor Functions (HTDF), one of the building blocks for the signature construction. HTDF

themselves are based on the Small Integer Solution (SIS) problem.

5. Multiparty Computation (MPC): MPC is a technology that allows us to compute on encrypted

values. Using MPC a number of servers can jointly compute any function without learning the

inputs to the function.

A small example is that of a group of people desiring to compute their average salary, without any

individual group member revealing their personal salary to others. Using MPC it is possible for

them to jointly compute a function which takes as input the secret salary of each group member

and reveals only one piece of information i.e. the average of all these secret numbers.

ACKNOWLEDGEMENT:

This paper would have been impossible without the support and mentoring of our advisor, Prof.

Biswadip Basu Mallik. We owe special thanks to him for the idea of this paper and the initiative

to write it. We can't thank him enough for introducing us to Homomorphic Encryption, which

allowed us to develop this paper. We would also like to thank him for endorsing our paper and

teaching us most of what we know about Fully Homomorphic Encryption (FHE).

We also drew on many sources for this tutorial, most extensively on Craig Gentry's PhD thesis.

We, all the members of this group, are also thankful to each other because we have received lots

of inputs and support through the discussions on this topic. We all have collaborated with each

other to work in this area and became able to overcome several design restrictions for our paper

through many discussions. These discussions have led to significant performance optimisations.

Finally, we would like to thank the professors of math and computer science departments of our

college for their encouragements and suggestions. Without them we could not have finished this

paper.

ISSN 2688-8300 (Print) ISSN 2644-3368 (Online) JMSCM, Vol.1, No.2, February, 2020

248 Journal of Mathematical Sciences & Computational Mathematics

CONCLUSION

The project has shown several facts. First, it has demonstrated how real cloud computing

calculations could be implemented with Homomorphic Encryption (HE). The limits of current HE

schemes were explained and analysed. Several tricks were found to overcome those and to design

efficient homomorphic binary circuits. Some complex circuits such as the pure average circuit

clearly showed the bounds of HE. But with enough design, cleverness and compromises, it was

also demonstrated that HE can be used in a few cases.

Many of the optimisations presented in our paper are general purpose and can be applied to solving

challenging problems dealing with large datasets in other application domains.

In this paper we have simplified and structured the jungle of definitions in the field of HE. We

investigated whether existing applications need HE as a solution to their problems.

There is still much work to be done. Current schemes have some way to go to be practical in daily

applications. Thus we can expect continuing focus on making existing schemes more efficient and

on constructing new efficient schemes.

A framework for group HE schemes has been presented in our paper. All secure schemes which

go beyond simple group homomorphic operations are noise-based and one of the main challenges

is to control the noise. In fact this is often the reason why fully homomorphic encryption schemes

are considerably less efficient. A unified view on somewhat/fully Homomorphic encryption

schemes may be very useful in gaining a better understanding of the expected security and on the

possible design space.

All in all the topic of FHE is an interesting and challenging research area with great potential, and

there is much to be done. However, if research (specifically the advancement of efficiency)

continues at its current pace, we are confident that real-world applications may be right around the

corner.

REFERENCES

1. Craig Gentry. A Fully Homomorphic Encryption Scheme. PhD thesis, Standford University,

pages: 9-15, 43-50, 2009.

2. Craig Gentry. Fully Homomorphic Encryption Using Ideal Lattices. In The 41st ACM

Symposium on Theory of Computing (STOC), pages: 169-171, 2009.

3. Q.D.MCGAW. Homomorphic encryption: Cryptography for Cloud computing. Final Year

Project Report, Imperial College London, pages: 11-24, 2016.

4. Kristin E. Lauter, Michael Naehrig, Vinod Vaikuntanathan. Can homomorphic encryption be

practical? In Christian Cachin and Thomas Ristenpart, editors, Proceedings of the 3rd ACM Cloud

Computing Security Workshop, CCSW, pages: 113-124. ACM, 2011.

5. C. Paar and J. Pelzl. Understanding Cryptography. Copyright Springer-Verlag, pages: 173-175.

From: wiki.crypto.rub.de.

ISSN 2688-8300 (Print) ISSN 2644-3368 (Online) JMSCM, Vol.1, No.2, February, 2020

249 Journal of Mathematical Sciences & Computational Mathematics

6. Arjan Jeckmans, Andreas Peter, and Pieter H. Hartel. Efficient privacy-enhanced familiarity-

based recommender system. In Jason Crampton et al., editors. Computer Security – ESORICS

2013, volume 8134 of Lecture Notes in Computer Science, pages: 400-417. Springer, 2012.

7. Frederik Armknecht and Thorsten Strufe. An efficient distributed privacy-preserving

recommendation system. In The 10th IFIP Annual Mediteranean Ad Hoc Networking Workshop,

Med-Hoc-Net 2011, pages: 65-70. IEEE, 2011.

8. Junfeng Fan and Frederik Vercauteren. Somewhat practical fully homomorphic encryption.

17th March 2012. From: https://eprint.iacr.org/2012/144.pdf.

ISSN 2688-8300 (Print) ISSN 2644-3368 (Online) JMSCM, Vol.1, No.2, February, 2020

250 Journal of Mathematical Sciences & Computational Mathematics

