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Abstract 
  
We have reviewed the proof[1] of a conjecture posted in the Online Encyclopedia of Integer Sequences 

(OEIS)[2], which states that there are exactly five positive integers that can be represented in more than one 

way as the sum of non-negative integral powers of 2 and 3. The case for both powers being positive follows 

from a theorem of Bennett. We have also devised alternative logics to the elementary methods applied in 

the original paper “On duplicate representations as 2x+3y for nonnegative integers x and y”[1] to prove the 

case where zero exponents are allowed. Besides, we have included a nominal program towards the end, that 

verifies the statement of the conjecture. 

Keywords: Online Encyclopedia of Integer Sequences (OEIS), exactly five positive integers, non-negative 

powers of 2 and 3, Bennett theorem and zero exponents. 

INTRODUCTION 

The Online Encyclopedia of Integer Sequences (OEIS) encases a sequence, namely A004050[3], 

comprising integers of the form 2x + 3y for non-negative integers x and y. The sequence, on its 

entry in the OEIS, was remarked as a conjecture in September 2012 that only five of these integers 

can be so expressed in two diff erent ways.  

In fact, sequence A085634 lists those very integers expressible both as 2x +3y and 2a +3b, where x, 

y, a, and b non-negative integers and x > a. The five elements listed are as follows:  

a) 5 = 22 + 30,        5 = 21 + 31 

b) 11= 23 + 31,      11= 21 + 32 

c) 17 = 24 + 30,     17 = 23 + 32 

d) 35= 25 + 31,      35= 23 + 33 

e) 259 = 28 + 31,  259 = 24 + 35 
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On the entry of sequence A085634[4] in the OEIS, it was remarked in February 2005 that if n 

belongs to the sequence and n > 259, then n > 104000. In this note, this lower bound is rendered 

vacuously true by proving the conjecture that the five numbers listed above are the only elements 

of A085634.  

     We thus assume that:  

                                                       2x + 3y = 2a + 3b                                                                            (1) 

where x, y, a, and b are non-negative integers, such that (without loss of generality) x > a (whence 

y < b). Equivalently,  

                                                                  2x − 3b = 2a − 3y                                                             (2) 

This brings us to sequence A207079[5] in the OEIS, which is described in its entry as “the only 

non-unique diff erences between powers of 3 and 2.” It is given as a finite sequence of five 

elements, namely 1, 5, 7, 13 and 23. It is commented that the finiteness of this sequence is due to 

Bennett [6]. The finiteness of the specific sequence A207079 was first proved in 1982. Here, it is 

stated as a lemma, the special case of Bennett’s result that applies most directly to (2). 

Lemma 1 (Bennett): There are precisely three integers of the form 2x−3b, with x and b natural 

numbers, that are also expressible as 2a−3y, with a and y natural numbers such that x > a. They 

are 

 

       −1 = 23 − 32 = 21 – 31,             5 = 25 − 33 = 23 – 31,           13 = 28 − 35 = 24 – 31. 

These are, respectively, the only two such representations for these three integers. All other 

integers have either a unique such representation, or none at all. 

Bennett’s result is applied to the cases of (1) and (2) where x, y, a, and b are all positive integers. 

This leaves us with the special case when y = 0; clearly (1) and (2) are impossible if a = 0.The 

special case y = 0 is proved by elementary methods, except for the one instance where Lemma 1 

is applied to deduce that 1 has only the single representation 1 = 22 −31 . 

ANALYSIS 
 

CASE 1: when y > 0 

Lemma 2: There are precisely three solutions to (1) when y > 0. They are 

11 = 23 + 31 = 21+ 32, 

 35 = 25 + 31 = 23 +33, 
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259 = 28 + 31 = 24 + 35. 

Proof: 

Let c = 2a − 3y in (2).  

By Lemma 1, if c ∉ {−1,5,13}, then x = a, which contradicts the hypothesis x > a. Else, c ∈ 

{−1,5,13}. 

Let c = −1.  

By Lemma 1, two representations are possible, as in (2):   −1 = 23 − 32 = 21 – 31. 

Thus, x = 3, b = 2, a = 1, and y = 1.  

This gives:   23 + 31 = 21 + 32 = 11. 

Let c = 5.  

Then similarly as above, we get:  5 = 25 − 33 = 23 – 31,   

which gives:   25 + 31 = 23 + 33 = 35. 

Let c = 13. 

Then similarly as above, we get:  13 = 28 − 35 = 24 – 31,  

which gives:   28 + 31 = 24 + 35 = 259. 

CASE 2: when y = 0 

For a prime p and a natural number n, it is written p || n if p | n but p2 ∤ n. Here, the p-valuation of 

n is denoted by vp(n); where vp(n) = k  if pk || n. 

Lemma 3: If n is a natural number then:  

 

 

 

1Lemma 4: If n is a natural number then: 

 

 

 

if 2 ∤ n; 
 

if 2 | n. 

if 2 ∤ n; 
 

if 2 | n. 
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Lemma 3 and 4 follow easily from Basic Mathematics applying concepts of Binomial Theorem 

and Inductive reasoning as shown below: 

Proof: 

(I) When 2 ∤ n, let n = 2k + 1 (k ∈ I+) 

Now,  32k + 1 – 1 = 3.9k – 1 = 3(1 + kC1 .8 + kC2 .8
2 + ……… + kCk-1 .8

k-1 + 8k ) – 1 

                          = 3-1 + 3. kC1 .8 + 3.kC2 .8
2 + ……… + 3. kCk-1 .8

k-1 + 3. 8k 

                         = 2 + 2N (N ∈ I+)  

                         = 2(1+N) 

                         = 21 x (an odd integer) 

So, v2 (3
n - 1) = v2 (2

1 x (an odd integer)) = 1 (by definition of vp(n)) 

When 2 | n, we observe the following pattern for 3n - 1: 

For n=2 : 32 – 1 = 9 – 1 = 8 = 23 ; so v2(3
2 – 1) = 3 (using definition of vp(n)) 

                                                                           = 2 + 1 = 2 + v2(2) 

For n=4: 34 – 1 = 81 – 1 = 80 = 24. 51; so v2(3
4 – 1) = 4 (using definition of vp(n)) 

                                                                                   = 2 + 2 = 2 + v2(4) 

For n=6: 36 – 1 = 729 – 1 = 728 = 23.71.131 ; so v2(3
6 – 1) = 3 (using definition of vp(n)) 

                                                                                             = 2 + 1 = 2 + v2(6) 

Following this pattern, we must get that for n=2k (k ∈ I+):  v2(3
n – 1) = 2 + v2(n) 

(II) When 2 ∤ n, let n = 2k + 1 (k ∈ I+) 

 Now, 22k + 1 – 1 = 2.4k – 1 = 2(1+3)k – 1 = 2(1 + kC1 .3 + kC2 .3
2 +.… + kCk-1 .3

k-1 + 3k ) – 1 2-1 + 

2. kC1 .3 + 2.kC2 .3
2 + ……… + 2. kCk-1 .3

k-1 + 2. 3k 

         = 1 + 3N (N ∈ I+) which is not a multiple of 3 

Therefore, v3 (2
n - 1) = v3 (1 + 3N) = 0 

When 2 | n, we observe the following pattern for 2n - 1: 
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     For n=2 : 22 – 1 = 4 – 1 = 3 = 31 ; so v3(2
2 – 1) = 1 (by definition of vp(n)) 

                                                                               = 1 + 0 = 1 + v3(2) 

 

      For n=4 : 24 – 1 = 16 – 1 = 15 = 31. 51; so v3(2
4 – 1) = 1 (by definition of vp(n)) 

                                                                                          = 1 + 0 = 1 + v3(4) 

      For n=6 : 26 – 1 = 64 – 1 = 63 = 32.71 ; so v3(2
6 – 1) = 2 (by definition of vp(n)) 

                                                      = 1 + 1 = 1 + v3(6) 

Following this pattern, we must get that for n=2k (k ∈ I+):  v3(2
n – 1) = 1 + v3(n) 

Lemma 5: There are precisely two solutions to (1) when y = 0. They are 

5 = 22 + 1 = 21 + 31,                     17 = 24 + 1 = 23 + 32. 

Proof:  We are given: 

                                                       2x + 1 = 2a + 3b,                                                                        (3)                                                                                      

where x, a, and b are natural numbers, where x > a. Let s = x − a. Thus, 

                                                                       2a(2s − 1) = 3b − 1.                                                                  (4) 

It is necessary by Lemma 4 that s is odd, as, by (4), 3 ∤ 2s − 1.  

First, suppose b is odd; then Lemma 3 implies 2 || 3b − 1, hence, by (4), a = 1.  

Thus, by (3),  

2x − 3b = 1.  

Thus, by Lemma 1, x = 2 and b = 1. This produces the equation:  22 + 1 = 2 + 3 = 5. 

It remains to let b be even. Then a = 2 + v2(b) by Lemma 3. Suppose 22 | b. Then 34 − 1 | 3b − 1, 

hence 5 | 3b − 1. Then (4) implies 5 | 2s − 1, hence 4 | s, a contradiction as s is odd. Therefore 2 || b 

and a = 3.  

Writing b = 2c for an odd natural number c, we have by (4): 
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Letting 

 

 

then z is a natural number by Lemma 3, and we obtain the quadratic in z: 

 

2s − 1 = 2z2 − z. 

Completing the square yields: 

   (4z − 1)2 = 2s+3 − 7. 

Writing s = 2t + 1 yields the difference of squares factorization: 

    (2t+2 − 4z + 1)(2t+2 + 4z − 1) = 7. 

Therefore,  2t+2 − 4z + 1 = 1,      2t+2 + 4z − 1 = 7; 

thus,  2t+2 = 4z = 4. 

Therefore t = 0, z = 1; thus, c = 1.  

Hence s = 1 and b = 2.  

Recalling a = 3, we have x = 4.  

This gives the equation: 24 + 1 = 23 + 32 = 17. 

An alternative approach: 

We have already proved that 4 ∤ b but 2 | b. So, b=2m (m ∈ I+) 

Let m=2k (k ∈ I+) (i.e. m be even), then b=4k i.e. 4 | b which contradicts 4 ∤ b. 

So, m can’t be even.  

Rewriting the right hand side expression of (4) in terms of m, we get 32m – 1 = 9m – 1 

Now, we observe :   

91 – 1 = 8 = 8 x 1 = 8 x (an odd integer) 

93 – 1 = 728 = 8 x 91 = 8 x (an odd integer)                                    

95 – 1 = 59048 = 8 x 7381 = 8 x (an odd integer)      
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And so on.  

Let us assume (9p – 1) gives 8 x (an odd integer) for p being an odd integer 

Thus, we can write:  9p – 1 = 8 x (an odd integer) = 8 x (2k + 1); (k ∈ I+) = 16k + 8 

Getting 9p = (16k + 9)         (i) 

Now, for the next odd integral power of 9 i.e. p+2,   

9p+2 – 1 = 81 x 9p – 1 = 81 x (16k + 9) – 1 (using (i)) 

      = 1296k + 728  

    = 8(128k + 91) 

    = 8(2(64k + 45) + 1) 

    = 8(even + 1) 

    = 8 x odd                                           (ii) 

Concluding by mathematical induction, from (i) and (ii), 9m – 1 = 8 x (an odd integer) ∀ m; 

m=1,3,5,7,…….(2k-1) 

So, right hand side of (4) = 8 x (an odd integer) 

Therefore, left hand side should also be 8 x (an odd integer) 

i.e. 2a(2s − 1) = 8 x (an odd integer)  

but an odd integer is not divisible by any power of 2  

      So, 2a = 8 (Since 2s-1 is an odd integer) 

      i.e. a=3 

Hence, from (3), we get 2x + 1 = 23 + 3b  i.e. 2x – 3b = 23 – 1 = 7 = 16 – 9 = 24 - 32 

                        i.e. x=4, b=2 (using lemma 1) 

     So, 2x + 1 = 24 + 1 = 17 = 23 + 32 = 2a + 3b .  

 

VERIFICATION 

 

Besides reviewing the theoretical proof, we have devised a very simple program whose outcome 

supports this conjecture. The range of input can be taken as desired and the numbers within that 

range belonging to the sequence (if at all present) will be displayed. The program was tested(run) 
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against input ranging from 2 to 9223372036854775807 (the largest integer a data type can hold[7] 

(we couldn’t reach the value 104000 due to size limitations)). But this problem can be eradicated if 

we use more powerful computers) and the results were only these five integers: 5, 11, 17, 35 and 

259. 

 

 

 
 

 

Fig1 Program code (in JAVA), for printing all the integers from 2 to 9223372036854775807, that can be be 

represented as 2x + 3y in more than one way (two ways).  
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Fig.2 Program code (in JAVA), for printing all the integers from 2 to 9223372036854775807, that can be 

be represented as 2x + 3y in more than one way (two ways).  

 
 

 
 

Fig 3 Output of the program after compiling successfully 
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With a little modification of the code, it can also be shown that the number of pairs (x,y) satisfying 

the equation: ax - by = c (where a, b, c, x and y are positive integers and a, b ≥ 2) will never exceed 

‘2’ which is in compliance with the Bennett theorem. 

 

CONCLUSION 
 

The conjecture that there are exactly five positive integers: 5, 11, 17, 35 and 259 that can be written 

in more than one way as the sum of a non-negative power of 2 and a non-negative power of 3 is 

now verified to be true. This fact itself is quite surprising that despite so many positive integers 

existing within 104000, only five such integers satisfy the above criterion. Throughout this paper, 

only elementary methods are used. Attempts like this that involve verification and/or justification 

of members of a number sequence, improves the understanding of similar number patterns and 

help us to analyze how they behave when subjected to specific mathematical conditions.  
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