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Abstract                                                                                                                    

In this paper we study the Electron Energy Spectra (EES) in quantum wells (QWs) of heavily doped (HD) 

non-linear optical, III-V, II-VI, IV-VI and stressed Kane type compounds by formulating HDEES in each 

case respectively considering all the specialties of the energy band constants of the said materials . It is 

noted that the complex EES in many cases in HDS, instead of real one, occurs from the existence of the 

essential poles in the corresponding EES in the absence of band tails. The EES in QWs is Quantized 2D 

closed surfaces. As a collateral study we have also investigated the effective mass (EM), Density-of-states 

(DOS) function and the electron statistics in this context for the purpose of comprehensive understanding.  

The EM exists in the forbidden zone, which is impossible without the effect of band tailing. In the absence 

of band tails, the EM in the band gap of semiconductors is infinity. Besides, depending on the type of 

unperturbed carrier energy spectrum, the new forbidden zone will appear within the normal energy band 

gap for HDS. Under certain limiting conditions all the results for all the models get simplified the well-

known results of an isotropic parabolic energy bands which exhibit the mathematical compatibility of our 

present generalized analysis. 

Keywords: Electron Energy Spectra, Heavy Doping, Quantum Wells, Effective Mass, Density-of-States 

Function (DOS) 

1. INTRODUCTION:  

The concept of the Electron Energy Spectra (EES) of the carriers in electronic materials and their 

nano-structures occupies a singular position in the whole arena of Nano Science and related 

disciplines in general and its importance [1-22] has already been established since the inception of 

the theory of band structure of Solid State Physics. The concept of EES is of fundamental 
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importance for not only the characterization of nano-structures but also the study of the carrier 

transport in electronic materials and their quantized counter parts through the proper formulation 

of the Boltzmann Transport equation which, in turn, needs the corresponding EES of the heavily 

doped materials. It is important to note that six important transport quantities namely, the 

effective mass (EM), density-of-states (DOS) function, the sub-band energy and the 

measurement of band-gap in the presence of strong light waves, intense electric field and 

heavy doping are in disguise in the very important concept of EES. Besides, the acoustic 

mobility limited momentum relaxation time is inversely proportional to the respective DOS 

function of a particular semiconductor and integral over the DOS function leads to carrier 

statistics under the condition of extreme carrier degeneracy which, in turn, is connected to 

the twenty five important transport topics of quantum effect devices namely the Landau Dia 

and Pauli’s Para Magnetic Susceptibilities [23], the Einstein’s Photoemission [24], the Einstein 

Relation [25], the Debye Screening Length[26], the Generalized Raman gain [27], the Normalized 

Hall coefficient[28], the Fowler-Nordheim Field Emission [29], the Thermoelectric Power [30-

31], the Plasma Frequency [32],the Magneto-Thermal effect in Quantized Structures [33], the 

Activity coefficient [34], the Reflection coefficient [35], the Heat Capacity [36], the Faraday 

rotation [37], the Optical Effective Mass [38], the Carrier contribution to the elastic constants 

[39], the Diffusion coefficient of the minority carriers [40], the Nonlinear optical response [41], 

the Third order nonlinear optical susceptibility [42], the Righi-Leduc coefficient [43], the Electric 

Susceptibility [44], the Electric Susceptibility Mass [45], the Electron Diffusion Thermo-power 

[46] and the Hydrostatic Piezo-resistance Coefficient [47] respectively. 

It is well known that the constant energy 3D wave-vector space of bulk materials becomes 2D 

wave-vector surface in QWs due to dimensional quantization. Thus, the concept of reduction of 

symmetry of the wave-vector space and its consequence can unlock the physics of low-

dimensional structures. In this Paper, we study the EES in QWs of Heavily Doped (HD) non-

parabolic materials having different band structures in the presence of Gaussian band tails. At first 

we shall investigate the EES in Quantum Wells (QWs) of HD nonlinear optical compounds which 

are being used in nonlinear optics and light emitting diodes [48]. The quasi-cubic model can be 

used to investigate the symmetric properties of both the bands at the zone center of wave vector 

space of the same compound. Including the anisotropic crystal potential in the Hamiltonian, and 

special features of the nonlinear optical compounds, Kildal [49] formulated the electron dispersion 

law under the assumptions of isotropic momentum matrix element and the isotropic spin-orbit 

splitting constant, respectively, although the anisotropies in the two aforementioned band constants 

are the significant physical features of the said materials [50–52]. In section 2.2.1, the EES in QWs 

of HD nonlinear optical materials has been investigated on the basis of newly formulated HD EES 

of the said compound by considering the combined influence of the anisotropies of the said energy 

band constants together with the inclusion of the crystal field splitting respectively within the 

framework of formalism. As a collateral study we have also investigated the effective mass 

(EM), Density-of-states (DOS) function and the electron statistics in this context for the purpose 

of comprehensive understanding.  

.k p
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In section 2.2.2, the EES in QWs of HD III-V, ternary and quaternary materials has been 

studied in accordance with the corresponding HD formulation of the band structure and the 

simplified results for wide gap materials having parabolic energy bands under certain limiting 

conditions have further been demonstrated as a special case in the absence of band-tails and thus 

confirming the compatibility test. The II-VI materials are being used in nano-ribbons, blue green 

diode lasers, photosensitive thin films, infrared detectors, ultra-high-speed bipolar transistors, fiber 

optic communications, microwave devices, solar cells, semiconductor gamma-ray detector arrays, 

semiconductor detector gamma camera and allow for a greater density of data storage on optically 

addressed compact discs [53–60]. The carrier energy spectra in II-VI compounds are defined by 

the Hopfield model [110] where the splitting of the two-spin states by the spin-orbit coupling and 

the crystalline field has been taken into account. The section 2.2.3 contains the investigation of the 

EES in QWs of HD II-VI compounds.  

Lead Chalcogenides (PbTe, PbSe, and PbS) are IV-VI non-parabolic materials whose 

studies over several decades have been motivated by their importance in infrared IR detectors, 

lasers, light-emitting devices, photo-voltaic, and high temperature thermo-electrics [68-72]. PbTe, 

in particular, is the end compound of several ternary and quaternary high performance high 

temperature thermoelectric materials [73-77]. It has been used not only as bulk but also as films 

[78-81], QWs [82] super-lattices [83, 84] nanowires [85] and colloidal and embedded nano-

crystals [86–89], and PbTe films doped with various impurities have also been investigated [90-

97] These studies revealed some of the interesting features that had been seen in bulk PbTe, such 

as Fermi level pinning and, in the case of superconductivity [98]. In section 2.2.4, the 2D EES in 

QWs of HD IV-VI materials has been studied taking PbTe, PbSe, and PbS as examples. The 

stressed materials are being investigated for strained silicon transistors, quantum cascade lasers, 

semiconductor strain gages, thermal detectors, and strained-layer structures [99-102]. The EES in 

QWs of HD stressed compounds (taking stressed n-InSb as an example) has been investigated in 

section 2.2.5. Section 3 contains the result and discussion pertaining to this Paper.  

2. THEORETICAL BACKGROUND 

2.1 The EES in Quantum Wells (QWs) of HD nonlinear optical materials 

The form of k. p matrix for nonlinear optical compounds can be expressed extending Bodnar [74] 

as  
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in which
0gE  is the band gap in the absence of any field, ||P  and P  are the momentum matrix 
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elements parallel and perpendicular to the direction of crystal axis respectively,  is the crystal 

field splitting constant, and   are the spin-orbit splitting constants parallel and perpendicular 

to the C-axis respectively, , ( / 2)( )x yf P k ik   and 1i   . Thus, neglecting the contribution 

of the higher bands and the free electron term, the diagonalization of the above matrix leads to the 

dispersion relation of the conduction electrons in bulk specimens of nonlinear optical materials as 

 

0 0 0 0

2 2

1 2

2 2

|| || ||

( ) ( ) ( )

2 2
( ) ( )[( )( ) ( ) ( )],

3 3

2s z
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is the total energy of the electron as measured from the edge of the conduction band in the vertically 

upward direction in the absence of any quantization, 
2 2 2

s x yk k k  ,   
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2 || || || ||
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
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h is Planck’s constant and * *m and m


 are the longitudinal and transverse effective electron masses 

at the edge of the conduction band respectively. 

Thus the generalized unperturbed electron energy spectrum for the bulk specimens of the nonlinear 

optical materials in the absence of band tails can be expressed following (2) as 
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The Gaussian distribution F(V) of the impurity potential is given by [103]

 2 1/2 2 2( ) ( ) exp( ) 4/g gF V V  

where,
g  is the impurity screening potential. It appears from (4) that the variance parameter

g  is 

not equal to zero, but the mean value is zero. Further, the impurities are assumed to be uncorrelated 

and the band mixing effect has been neglected in this simplified theoretical formalism. 


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We have to average the kinetic energy in the order to obtain the EES in nonlinear optical materials 

in the presence of band tails. Using the (3) and (4), we get
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The (5) can be rewritten as
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where, ( )gErf E  s the error functions of ( )gE  . 
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From (9), one can write
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After computing this simple integration, one obtains 
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which 1i    and Z, in general, is a complex number. 
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The (21) consists of both real and imaginary parts and therefore, ( )I  is complex, which can also 

be proved by using the method of analytic continuation of Complex Analysis. 

The integral 3 ||( )I c  in (8) can be written as
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Thus combining the aforementioned equations, 3 ||( )I c can be expressed as 
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Therefore, the combination of all the appropriate integrals together with algebraic manipulations 

leads to the expression of the dispersion relation of the conduction electrons of HD nonlinear 

optical materials forming Gaussian band tails as 
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From (26), it appears that the energy spectrum in HD nonlinear optical materials is 

complex. The complex nature of the electron dispersion law in HD materials occurs from the 

existence of the essential poles in the corresponding   electron energy spectrum in the absence 

of band tails. It may be noted that the complex band structures have already been studied for bulk 

materials and super lattices without heavy dopingand bears no relationship with the complex 

electron dispersion law as indicated by (26). The physical picture behind the formulation of the 

complex energy spectrum in HDS is the interaction of the impurity atoms in the tails with the 

splitting constants of the valance bands. More is the interaction; more is the prominence of the 

complex part than the other case. In the absence of band tails, 0
g

h ® , and there is no interaction 

of the impurity atoms in the tails with the spin orbit constants. As a result, there exist no complex 

energy spectrum and (26) gets converted into (2) when 0
g

h ® . Besides, the complex spectra are 

not related to same evanescent modes in the band tails and the conduction bands. 

The transverse and the longitudinal EMs at the Fermi energy 
h

F
E of HD nonlinear optical materials 

can, respectively, be expressed as
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where 
h

F
E  is the Fermi energy of HDS in the presence of band tails as measured from the edge of 

the conduction band in the vertically upward direction in the absence of band tails and the primes 

denote the differentiations  of the differentiable functions with respect to Fermi energy in the 

appropriate case.  

In the absence of band tails 0
g

h ®  and we get
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where FE  is the Fermi energy as measured from the edge of the conduction band in the vertically 

upward direction in the absence of any perturbation,

1 2 1 3 2( ) ( ), ( ) ( ), ( ) ( ),E E E f E and E f E      Comparing the aforementioned equations, one 

can infer that the effective masses exist in the forbidden zone, which is impossible without the 

effect of band tailing. For   semiconductors, in the absence of band tails the effective mass in 

the band gap is infinity. The density-of-states (DOS) function is given by
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The oscillatory nature of the DOS for HD nonlinear optical materials is apparent from (31a). For,

11( , )gE   , the cosine function becomes negative leading to the negative values of the DOS. 

The electrons cannot exist for the negative values of the DOS and therefore, this region is forbidden 

for electrons, which indicates that in the band tail, there appears a new forbidden zone in 

addition to the normal band gap of the semiconductor.  

The use of (31a) leads to the expression of the electron concentration as
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r is the set of real positive integers whose upper s and (2 )r

is the Zeta function of order 2r [104, 105]. 

For dimensional quantization along z- direction, the dispersion relation of the 2D electrons in this 

case can be written following (26) as 
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where, ( 1,2,3,...) and z zn d are the size quantum number and the nano-thickness along the z-

direction respectively. 

The general expression of the total 2D DOS 2 ( )DTN E can, in general, be expressed as
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where ( , )zA E n is the area of the constant energy 2D wave vector space and in this case it is for 

QWs, ( )
znH E E  is the Heaviside step function and is the corresponding sub-band energy. 

Using (32) and 

(33), the expression of the 2 ( )DTN E  for QWs of HD nonlinear optical materials can be written as
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Thus we observe that both the total DOS and sub-band energies of QWs of HD nonlinear optical 

materials are complex due to the presence of the pole in energy axis of the corresponding   materials 

in the absence of band tails. 

znE
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The EM in this case is given by 
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Although the importance of the EM is already well-known in the literature [106-107], we 

observe that the EM is the function of size quantum number and the Fermi energy due to the 

combined influence of the crystal filed splitting constant and the anisotropic spin-orbit splitting 

constants respectively. Besides it is a function of  due to which the EM exists in the band gap, 

which is otherwise impossible. 

Combining (34) with the Fermi-Dirac occupation probability factor, integrating between 
1z

nE to 

infinity and applying the generalized Sommerfeld’s lemma [108], the 2D carrier statistics in this 

case assumes the form  
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  is the Fermi energy in the presence 

of size quantization of the QWs of HD non-linear optical materials as measured from the edge of 

the conduction band in the vertically upward direction in the absence of any perturbation. 

In the absence of band-tails, the 2D EM in the x-y plane at the Fermi level, the total 2D DOS, the 

sub-band energy 
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znE of non-linear optical materials and the surface electron concentration can, 

respectively, be written as
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FSE   is the Fermi energy in the 2-D sized quantized material in the presence of size quantization 

and in the absence of band-tails as measured from the edge of the conduction band in the vertically 

upward direction in the absence of any quantization,
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In the absence of band-tails, the DOS for bulk specimens of non-linear optical materials is given 

by
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Combining (41a) with the Fermi-Dirac occupation probability factor and using the generalized 

Sommerfeld’s lemma [108], the electron concentration can be written as
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FE is the Fermi energy of the bulk specimen in the absence of band tails as measured from the 

edge of the conduction band in the vertically upward direction  
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2.2 The EES in Quantum Wells (QWs) of HD III-V materials 

The EES of the conduction electrons of III-V compounds are described by the models of Kane 

(both three and two bands) [83,84], Stillman et. al. [85], Newson [86] and Palik.et.al.[87] 

respectively. For the purpose of complete and coherent presentation and relative comparison, the 

EMs in QWs of HD III-V materials has also been investigated.  

(a) The Three Band Model of Kane 

Under the conditions, ||0,        (isotropic spin orbit splitting constant) and * *

|| cm m m   

(isotropic effective electron mass at the edge of the conduction band), (2) gets simplified as 
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which is known as the three band model of Kane [84] and is often used to investigate the physical 

properties of III-V materials. 
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Under the said conditions, the HD electron dispersion law in this case can be written as
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Thus, the complex energy spectrum occurs due to the term 32 ( , )gT E   and this imaginary band is 

quite different from the forbidden energy band. 

The EM at the Fermi level is given by

 * '
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Thus, the EM in HD III-V, ternary and quaternary materials exists in the band gap, which is the 

new attribute of the theory of band tailing. 

In the absence of band tails,  and the EM assumes the form
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The DOS function in this case can be written as
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Thus, the oscillatory DOS function becomes negative for 21( , )gE    and a new forbidden zone 

will appear in addition to the normal band gap.

 

0g 
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The electron concentration can be expressed as
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For dimensional quantization along z- direction, the dispersion relation of the 2D electrons in this 

case can be written as

 
2 22 2

31 32
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The expression of the 2 ( )DTN E in this case assumes the form
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and the sub band energies 5zn DE in this case given by 

 2 2 1

31 5{ ( / ) }(2 ) ( 0) 5,
zz z c n D gn d m T E  

Thus we observe that both the total DOS in QWs of HD III-V compounds and the sub band 

energies are complex due to the presence of the pole in energy axis of the corresponding materials 

in the absence of band tails. 

The EM in this case is given by 

 *

1 31 1( , , ) [ ( 5, , ) 1]F HD g z c F HD g zm E n m T E n 

The carrier statistics in this case can be expressed as   
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In 

the absence of band tails, the 2D dispersion relation, EM in the x-y plane at the Fermi level, the 

total 2D DOS, the sub-band energy and the electron concentration for QWs of III-V materials 

assume the following forms
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It 

is worth noting that the EM in this case is a function of Fermi energy alone and is independent of 

size quantum number.
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where, the sub-band energies can be expressed as
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In the absence of band tails, the DOS function, the EM and  the electron concentration in bulk III-

V, ternary and quaternary materials in accordance with the unperturbed three band model of Kane 

assume the following forms 
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Under the inequalities 
0 0
 or g gE E    , (42) can be expressed as

 
2 2

(1 )
2

60
c

k
E E

m
 

where 
0

1( )gE  and is known as band non-parabolicity.  

It may be noted that (60) is the well-known two band model of Kane and is used in the literature 

to study the physical properties of those III-V and opto-electronic materials whose energy band 

structures obey the aforementioned inequalities. 

The dispersion relation in HD III-V, ternary and quaternary materials whose energy spectrum in 

the absence of band tails obeys the two band model of Kane as defined by (60), can be written as 

 
2 2
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The 

EM in this case can be written as 

2znE
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Thus, one again observes that the EM in this case exists in the band gap. 

In the absence of band tails, 0g  and the EM assumes the well-known form 

 *( ) {1 2 6} 2
F
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
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The DOS function in this case can be written as 
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Since, the poles of the original two band Kane model are at infinity and no finite poles with 

respect to energy, therefore the HD counterpart will be totally real and the complex band 

vanishes. 

The electron concentration is given by      
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For dimensional quantization along z-direction, the dispersion relation of the 2D electrons in this 

case can be written following (61) as 
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The expression of the 2 ( )DTN E in this case can be written as 
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The sub-band energies 7zn DE in this case given by  

 2 2 1 2

7{ ( / ) }(2 ) ( , ) 66
zz z c n D gn d m E   

Thus, we observe that both the total DOS and sub-band energies of QWs of HD III-V compounds 

in accordance with two band model of Kane are not at all complex since the dispersion relation in 

accordance with the said model has no pole in the finite complex plane. 

The EM in this case is given by                 
* '

1 2 1( , , ) [ ( , , )] (67)F HD g z c F HD g zm E n m E n  

The electron statistics in this case assumes the form 
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Under the inequalities
0 0
 or g gE E    , (60) assumes the form
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The EM can be written from (69a) as 
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The total 2D DOS function assumes the form 
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where, the sub-band energy (
3znE ) can be expressed as
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The 2D electron statistics can be written as
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and ( )jF  is the one parameter Fermi-Dirac integral of order j which can be written [109] as
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or for all j, analytically continued as a complex contour integral around the negative x-axis
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where  is the dimensionless quantity and x is independent variable,  

The forms of the DOS, the EM and the electron statistics for bulk specimens of III-V materials in 

the absence of band tails whose energy band structures are defined by the two-band model of Kane 

can, respectively, be written as
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(c)Under the constraints g gE E   together with the inequality 1FE , the (76) assumes 

the forms as  
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The dispersion relation in HDS whose energy spectrum in the absence of band tails obeys the 

parabolic energy bands is given by
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Since the dispersion relation in accordance with the said model is an all zero function with no pole 

in the finite complex plane, therefore the HD counterpart will be totally real, which is also apparent 

form the expression (78). 

The EM in this case can be written as
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In the absence of band tails, 0gn   and the EM assumes the form
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is well-known that the EM in unperturbed parabolic energy bands is a constant quantity in 

general excluding cross-fields configuration. However, the same mass in the corresponding HD 

bulk counterpart becomes a complicated function of Fermi energy and the impurity potential 

together with the fact that the EM also exists in the band gap solely due to the presence of finite 
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The DOS function in this case can be written as
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The electron concentration is given by
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For dimensional quantization along z-direction, the dispersion relation of the 2D electrons in this 

case can be written following (78) as
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the expression of the 2 ( )DTN E in this case can be written as
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The sub band energies 9zn DE in this case given by
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The EM in this case can be written as
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The carrier statistics in this case assumes the form 
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Under the condition 0  , the expressions of total 2D DOS, for semiconductors without forming 

band tails whose bulk electrons are defined by the isotropic parabolic energy bands can, be written 

as
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The sub-band energy
z p

nE , the 2 Dn and the EM can, respectively, be expressed as
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(b) The Model of Stillman et. al. 

In accordance with the model of Stillman et. al. [85], the electron dispersion law of III-V materials  

assumes the form 
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and 

0m is the free electron mass 

In the presence of band tails, (91) gets transformed as  
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The EEM can be written as 
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The DOS function in this case can be written as
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The electron concentration is given by
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For dimensional quantization along z- direction, the dispersion relation of the 2D electrons in this 

case can be written following (108) as

 
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The expression of the 2 ( )DTN E in this case can be written as
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The sub band energies 11zn DE in this case given by 

 2 2 1

12 11{ ( / ) }(2 ) ( , ) 98
zz z c n D gn d m I E  

The EM in this case assumes the form

 1 12 1*( , , ) {I ( , , )] 99F HD g z c F HD g zm E n m E n 

The 2-D electron statistics in this case can be written as 
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For unperturbed material, the 2-D EM can be expressed as 

 12

1/2
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1Fs c Fsm E m E

where I E a a E


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It appears that the EM in this case is a function of Fermi energy alone and is independent of size 

quantum number. 

The total 2D DOS function in the absence of band tails in this case can be written as 

max

3
2 122

1

( ) ( ) {[ ( )] ( )} (102)
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where, the sub band energies can be expressed as 

3

2
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The 2D electron concentration assumes the form  
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



The expression of electron concentration for bulk specimens of III-V semiconductors (in the 

absence of band tails) can be written in accordance with the model of Stillman et. al.[85] as
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(c) Model of Palik et al. 

3z
nE
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The energy spectrum of the conduction electrons in III-V semiconductors up to the fourth order in 

effective mass theory, taking into account the interactions of heavy hole, light hole and the split-

off holes can be expressed in accordance with the model of Palik et al. [87] as 

 
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The (116) gets simplified as  
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Under the condition of heavy doping forming Gaussian band tails, (117) assumes the form 
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The EM can be written as 
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The DOS function in this case can be expressed as
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Since, the original band model in this case is a no pole function, in the finite complex plane 

therefore, the HD counterpart will be totally real and the complex band vanishes. 

The electron concentration is given by   
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For dimensional quantization along z-direction, the dispersion relation of the 2D electrons in this 

case can be written following (117) as

 
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the expression of the 2 ( )DTN E in this case can be written as
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The sub band energies in this case given by 
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The EM in this case can be expressed as
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The 2-D electron statistics in this case can be written as 
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The 2D electron dispersion relation in the absence of band tails this case assumes the form
2 2 2
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The EM in this case can be written from (127a) as 
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The total 2D DOS function can be written as 
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where, the sub band energies
4znE can be expressed as 
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The 2D electron concentration assumes the form 
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The expression of electron concentration for bulk specimens of III-V semiconductors (in the 

absence of band tails) can be written in accordance with the model of Stillman et. al. [85] as
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2.3. The EES in Quantum Wells (QWs) of HD II-VI materials 

The carrier energy spectra in bulk specimens of II-VI compounds in accordance with 

Hopfield model [110] can be written as  

 2 2

0 0 0 122s z sE a k b k k   

where  2 * 2 *

0 0 || 0/ 2 ,  2 / ,  and a m b m 
    represents the splitting of the two-spin states by the spin 

orbit coupling and the crystalline field. 

Therefore the dispersion relation of the carriers in HD II-VI materials in the presence of Gaussian 

band tails can be expressed as

 2 2

3 0 0 0 123( , )g s z sE a k b k k     

Thus, the energy spectrum in this case is real since the corresponding E-k relation in the absence 

of band tails as given by (123) is a no pole function in the finite complex plane.  

The transverse and the longitudinal EMs masses are, respectively, given by
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Thus the transverse EM in HD II-VI semiconductors is a function of electron energy and is double 

valued due to the presence of and due to heavy doping the same mass exists in the band gap. 

In the absence of band tails, 0g  , we get 
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The volume in k- space as enclosed (123) can be expressed as
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Therefore, the electron concentration can be written as      

0
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The dispersion relation of the conduction electrons of QWs of HD II-VI materials for dimensional 

quantization along z- direction can be written following (123) as 
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The EM can be expressed following (130) as
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Thus we observe that the doubled valued effective mass in 2-D QWs of HD II-VI materials is a 

function of Fermi energy, size quantum number and the screening potential respectively together 

with the fact that the same mass exists in the band gap due to the sole presence of the splitting of 

the two-spin states by the spin orbit coupling and the crystalline field.  

The sub-band energy in this case is given by  
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The surface electron concentration at low temperatures assumes the form 
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The dispersion relation of the conduction electrons of QWs of II-VI materials for dimensional 

quantization along z- direction in the absence of band tails can be written following (122) as 
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Using (144), the EM in this case can be written as
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The sub-band energy 
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 
5

2

0 136( )
z

z
n

z

n
E b

d




The area of constant energy 2D quantized surface in this case is given by where  
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The surface electron concentration can be expressed in this case as
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where 0 ( )f E is the Fermi-Dirac occupation probability factor.

 
From (137) we get   
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2.4. The EES in Quantum Wells (QWs) of HD IV-VI materials 

a) The Model of Dimmock 

The dispersion relation of the conduction electrons in IV-VI semiconductors can be expressed in 

accordance with Dimmock [85] as 
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where,  is the energy as measured from the center of the band gap
0
,g tE m  and lm represent the 

contributions to the transverse and longitudinal effective masses of the external 6 6 and L L  bands 

arising from the .k p  perturbations with the other bands taken to the second order.  
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From   (140), we can write
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Using (141), the dispersion relation of the conduction electrons in HD IV-VI materials can be 
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Thus, the energy spectrum in this case is real since the corresponding dispersion relation in the 

absence of band tails as given by (142) is a pole-less function with respect to energy axis in the 

finite complex plane.  

The respective transverse and the longitudinal EMs’ in this case can be written as

78* 2

0 0 72

78

0 72 78

78 70 75

2
84 84*

84

{ ( , )}
( , ) {2 ( , )} ( , )[ { ( , )} ]

2 ( , )

{ ( , )} [ ( , ) ( , )]] (143)

( , ) [4 ( , ) ( , )]

{ ( , )} {
( , ) [ { ( , )

,

}
4

h

Fh

h

g

F g g g g

g

g g g E

g g g

g

F g g

E
m E Z E z E E

E

Z E E E

E E E

E
an

where

d m E E

 
    

 

    

     

  
  






  

  




  

85

2

84 85

( , )} 2{{ ( , )}
] (144)

( ( , )) 4 ( , )
Fh

g g

E E

g g

E E

E E

  

   


 



in which,  

 

Thus, we can see that the both the EMs’ in this case exist in the band gap.  
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In the absence of band tails, , we get
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The volume in k- space as enclosed by (142) can be written through the integral as 
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The (148) can be written as
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is the incomplete elliptic integral of the 2nd kind and is given by [105],  
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is the incomplete elliptic integral of the 1st kind and is given by [105], 
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The DOS function in this case is given by
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Therefore the electron concentration can be expressed as   
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The 2D dispersion relation of the conduction electrons in QWs of IV-VI materials in the absence 

of band tails for the dimensional quantization along z direction can be expressed as
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Therefore, the HD 2-D dispersion relation In this case assumes the form
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The area ( , )zA E n of the 2D wave vector space can be expressed as 
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The  (156) can be expressed as 
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Performing the integration, we get
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The use of the Residue theorem leads to the evaluation of the integral in (160) as 
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Therefore, the 2D area of the 2D wave vector space can be written as
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The EM for the HD QWs of IV-VI materials can thus be written as 
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Thus, the EM is a function of Fermi energy and the quantum number due to the band non-

parabolicity. 

The total DOS function can be written as
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The use (164) leads to the expression of 2D electron statistics as
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In the absence of band-tails the EM in QWs of IV-VI materials can be written as
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Thus, the EM is a function of Fermi energy and the quantum number due to the band non-

parabolicity. 

The total DOS function can be written as
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where the sub-band energy 
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In the absence of band-tails, the expression of 2D electron statistics can be written as  
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For bulk specimens of IV-VI materials, the expression of electron concentration assumes the forms 
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  is the in complete Elliptic integral of second kind,  is the incomplete Elliptic integral of 

first kind, 

( , )F q
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b) The dispersion relation of the conduction electrons in bulk specimens of IV-VI semiconductors 

in  accordance with the model of Bangert and Kastner [111] is given by
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The electron energy spectrum in heavily doped IV-VI materials in this case can be expressed as
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Therefore (174) can be written as, 
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Since 1 2( , ) and ( , )g gF E F E   are complex, the energy spectrum is also complex in the presence of 

Gaussian band tails. 

The EMs can be written as  
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It 

appears then that, the evolution of the masses needs an expression of the carrier concentration, 

which in turn is determined by the DOS function. 

The DOS function in this case can be expressed as  
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The 2D dispersion relation in this case assumes the form  
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The surface electron concentration can be expressed as 
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the absence of band-tails the EMs can be written as 
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appears then that, the evolution of the masses needs an expression of the carrier concentration, 

which in turn is determined by the DOS function. 

The DOS function in this case can be expressed as  
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In the absence of band-tails, the 2D dispersion relation in this case assumes the form 
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The total DOS function can be written as 
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The surface electron concentration can be expressed as  
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2.5The EM in Quantum Wells (QWs) of HD stressed Kane type materials 

The electron energy spectrum in stressed Kane type semiconductors can be written [112] as 
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1C  is the conduction band deformation potential,  is the trace of the strain tensor  which can 

be written as 

0

ˆ 0 ,
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 

  


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 
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 , 

2C is a constant which describes the strain interaction between the conduction and valance bands, 

1 2,  g gE E E C B    is the momentum matrix element,  

0 1 0 0
0 0 0 0 0

( ) 3 1 1 2
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, ,l m n are the matrix elements of the strain perturbation operator , 0 0( ) ( 3)
xy

g

D E d
E





, 

2 20 0
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0
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2
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The use of (194) can be written as 

 ̂
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The (195a) can be written as 

 2 2 2 2 3 2

17 27 37 67 67 67 67[ ] 195x y zEk T k T k T k q E R E V E b      

where, T17=α1, T27= α2, T37= α3, t1=q67, t2=R67, t3=V67 and  t4=ρ67

 

Under the condition of heavy doping, (195b) can be written as 
2 2 2 2

17 27 37 67 67 67 67(4) (1) (1) (1) [ (6) (5) (4) (1)]x y zI k T I k T I k T k I q I R I V I I       (1.195c) 

where,  
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E
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The (186) can be written as 
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Using  (4), together with simple algebraic manipulations, one obtains 
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Thus (197) can be written as 
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Thus, combining the appropriate equations, the dispersion relations of the conduction electrons in 

HD stressed materials can be expressed as 
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Thus, the energy spectrum in this case is real since the dispersion relation of the corresponding   

materials in the absence of band tails as given by (194) has no poles in the finite complex plane.  

The EMs along x, y and z directions in this case can be written as
2

* 2
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Thus, we can see that the EMs in this case exist within the band gap.  

In the absence of band tails, 0g   we get

 
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The DOS function in this case can be written as 
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Using (212), the electron concentration at can be written as 
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The dispersion relation of the conduction electrons in HD QWs of Kane type semiconductors can 

be written as 
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The EM can be expressed as
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From (215), it appears that the EM is a function of Fermi energy, and size quantum number and 

the same mass exists in the band gap. 

Thus, the total 2D DOS function can be expressed as 
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The sub band energies 
8

( )
z HDnE are given by
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The 2D surface electron concentration per unit area for QWs of stressed HD Kane type compounds 

can be written as 
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In the absence of band tails, the 2D electron energy spectrum in QWs of stressed materials assumes 

the form
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The area of 2D wave vector space enclosed by (219) can be written as
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From (219), the EM can be written as
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Thus, the total 2D DOS function can be expressed as
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The 2D surface electron concentration per unit area for QWs of stressed Kane type compounds 

can be written as 
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The DOS function for bulk specimens of stressed Kane type semiconductors in the absence of 

band tail can be written as 
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Combining (224) with the Fermi-Dirac occupation probability factor and using the generalized 

Sommerfeld lemma the electron concentration in this case can be expressed as
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Thus, we can summarize the whole mathematical background in the following way.  

Thus, we can summarize the whole mathematical background in the following way.  

In this Paper, we have investigated the 3D and 2D EMs from HD bulk and QWs of non-

linear optical materials on the basis of a newly formulated electron dispersion law considering the 

anisotropies of the effective electron masses, the spin orbit splitting constants and the influence of 

crystal field splitting within the framework of k.p formalism. The results for 3D and 2D EMs from 

HD bulk and QWs of III-V, ternary and quaternary compounds in accordance with the three and 

two band models of Kane form a special case of our generalized analysis. We have also studied 

the EM in accordance with the models of Stillman et al. and Palik et al. respectively since these 

models find use to describe the electron energy spectrum of the aforesaid materials. The 3D and 

2D EMs has also been derived for HD bulk and QWs of II-VI, IV-VI, stressed materials, by using 

various appropriate band models respectively on the basis of the appropriate carrier energy spectra. 

The well-known expressions of the EMs in the absence of band tails for wide gap materials have 

been obtained as special cases of our generalized analysis under certain limiting conditions. This 

indirect test not only exhibits the mathematical compatibility of our formulation but also shows 

the fact that our simple analysis is a more generalized one, since one can obtain the corresponding 

results for relatively wide gap materials having parabolic energy bands under certain limiting 

conditions from our present derivation  

3. RESULT AND DISCUSSIONS  

Using the appropriate equations together with parameters as given elsewhere [113], we have 

plotted the real part of the energy spectrum as a function of election energy in Fig. 

2.1(a) and the Fig. 2.1(b) exhibits the dependence of the imaginary part of the energy spectrum Im

 on electron energy for HD n-Cd3As2(an example of tetragonal materials), respectively. 

 From Fig. 2.1(a), it appears that has an increasing trend with energy for 

positive values of . Besides for negative values of , the value of is positive 

indicating its band-tailing nature. Beyond =-1.0(eV), the value of  becomes 

negative and magnitude of the values are insignificant one. It is worth remarking that the band-

tailing nature of is clearly apparent from the Fig. 2.1(a). 

 From Fig. 2.1(b), we observe that Im has the Gaussian nature of variation with 

energy  for both positive and negative values of . The values of Im  are negative 

for all the values of as considered in Fig. 2.1(b). It may be remarked that the graph of Fig. 2.1(b) 
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clearly shows the tailing of Im into conduction band (i.e., for positive values of ) and 

the tailing within the spin-splitting band (i.e., for negative values of ) respectively. The 

maximum contribution of Im  appears at =-0.25 (eV) for  =0.8 (eV) which is 

beyond the band gap =0.095 (eV). From Fig. 2.2(a), we observe that the  has an 

increasing trend with positive value of E. For negative value of , the  becomes 

positive exhibiting clearly the band-tailing nature of it. Besides beyond =-1.0 (eV), the value of 

 becomes negative. In addition, the band-tailing nature of  is clearly 

apparent from the Fig. 2.2(a). 

 From Fig. 2.2(b), we can write that the nature of variation of the Im  versus 

is quite different from Im . Here, Im  has a positive alues with positive 

variations of E. Also, the positive values of Im  for negative  indicate the band-tailing 

nature. Beyond =-0.5 (eV), Im  becomes negative and the magnitude of the negative 

values are significant. The nature of variation of Im  is not Gaussian type but can 

roughly be approximated to it. This occurs for =0.085 (eV) (i.e., positive value of ). Because 

for =-0.21 (eV) for CdGeAs2, the nature of variation of Im is Gaussian. The 

contribution of  is of significant value as compared to Im . The band-

tailing is clearly shown in the variation of Im . 

 From Fig. 2.3(a), it appears that the nature of variation of the real part of the electron energy 

spectrum for CdGeAs2(an example of non-linear optical materials) is more or les same as that for 

the tetragonal materials as given by Fig. 2.1(a). In this case, the band tailing nature of variation of 

for CdGeAs2 is clearly shown in the graph. From Fig. 2.3(b), it appears that the 

nature of variation of the imaginary part of the electron energy spectrum for non-linear optical 

materials is more or less the same as that for the tetragonal material as given by Fig. 2.1(b). The 

Gaussian distribution of Im  with respect of  is apparent from the graph and the band 

tailing is clearly shown. 

 From Fig. 2.4(a), we can write that the band tailing effect is clearly shown in the graph. 

From Fig. 4(b), it appears that the variation of Im  with respect to is a Gaussian type 

with negative From Fig. 2.5, we can write that the curve (a) is valid for and  for the 

case of Cd3As2 and the curve (b) is valid for ,  and  to obtain the 

corresponding three band model of Cd3As2. The curve (a) shows that the DOS increases with the 

increase in the positive values of . The band tailing is clearly being observed from the graph. 

The variation of Im with respect to are unlike that with respect of Im for 

Cd3As2 because of the negative value of (-0.21(eV) in CdGeAs2. 
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The curve (b) also shows the same nature and finally the curve (b) merges with the curve (a). For 

negative value of , the curves (a) and (b) exhibit tailing in the DOS together with the oscillations. 

It is worth remarking in this context that at the value of  corresponding to point MN, curve (a) 

shows that the DOS becomes negative indicating the formation of a new forbidden zone in the 

material. The value of at those points lie between -1.45 (eV) at M and -1.65 (eV) at N which 

corresponds to the region away or near to the spin-orbit splitting band of the material. Besides, 

beyond -1.65 (eV), the DOS becomes positive. 

The oscillatory nature of the DOS for negative values of E has been predicted by the present theory. 

Also for the cosine function becomes negative indicating the negative value of 

the DOS and hence the creation of a new forbidden zone. The curve (b) is widely separated 

from the curve (a) for negative values of E. Also, it shows oscillation in this region with two points, 

P and Q where the DOS for curve (b) shows negative value. For this value of the DOS, the new 

forbidden zone appears for the curve (b). The value of at P is -1.45 (eV) and at Q is -1.58 (eV). 

Thereafter, the DOS again becomes positive. The oscillatory nature of the DOS for the Curve 

(b),is also predicted by the present formulation. For the curve (b), the new forbidden zone (i.e., 

PQ) appears earlier than the same for the curve (a). The band tailing in the DOS for the curves (a) 

and (b) are clearly indicated in the graph for negative values of . In the plot, the value of the 

DOS has been normalized by (1.0 x 1020) factor.  

 From Fig. 2.6, it appears that both the curves (a) and (b) of the DOS increase with increase 

in and finally the curve (b) converges with the curve (a). For negative value of , the curve (a) 

exhibits oscillations with positive values of the DOS. Two oscillation peaks have been shown to 

appear over the region of study of energy, . For the curve (a), the value of the DOS becomes 

negative as indicated by the region (X,Y), where the new forbidden zone has appeared. Besides, 

beyond the point Y, the DOS becomes positive with an oscillatory nature. The value of at X is

-1.68 (eV) and at Y is -1.8 (eV). The curve (a) is being widely separated from the curve (b) 

for the negative values of . In addition, the appearance of oscillations with the new forbidden 

zone in the DOS has also been predicted by the theory. The curve (b) also shows oscillation in the 

DOS as indicated in the figure. Between the point (R, S), the curve (b) shows negative values of 

the DOS indicating the formation of a new forbidden zone for the three band Kane model 

representation of CdGeAs2. The value of at point R is E=-1.7(eV) and at point Sis E -1.8(eV). 

Besides beyond point S, the DOS becomes positive with oscillatory nature. The curve (b) is widely 

separated from the curve (a) for negative values of E. The band tailing in the DOS for the curves 

(a) and (b) is clearly indicated in the graph. 

 In Fig. 2.7, we have plotted the energy spectra of n-InSb where the graph 3R indicates the 

real part for the perturbed three-band model of Kane in which the curve 3Im exhibits the 

imaginary part .The curve 3up indicates the unperturbed three-band model of Kane. The 

curve (2) has been EESawn for the perturbed two-band model of Kane in which 2up indicates the 

corresponding unperturbed EES). In Fig. 2.7, I indicate the perturbed parabolic band model and 

Iup exhibits the energy spectrum for unperturbed parabolic energy bands (i.e.  

E

E

E

11( , ) ,gE  

E

E

E E

E
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 
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E 

31( , )gT E 
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2 2 2 ).cE k m
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 Fig. 2.1 (a) Plot of the electron energy spectrum of  (in m-2) versus energy,  (eV) for Cd3As2. (b) 

Plot of the electron energy spectrum of  (in m-2) versus energy,  (eV) for Cd3As2. 

1Re[ ( , )]gE  E
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Fig.2.2(a) Plot of the electron energy spectrum of  (in m-2) versus energy,  (eV) for Cd3As2. (b) 

Plot of the electron energy spectrum of  (in m-2) versus energy,  (eV) for Cd3As2. 
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Fig. 2.3 (a) Plot of the electron energy spectrum of  (in m-2) versus energy,  (eV) for CdGeAs2. 

(b) Plot of the electron energy spectrum of  (in m-2) versus energy,  (eV) for CdGeAs2. 
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Fig. 2.4 (a) Plot of the electron energy spectrum of  (in m-2) versus energy,  (eV) for CdGeAs2. 

(b) Plot of the electron energy spectrum of  (in m-2) versus energy,  (eV) for CdGeAs2. 
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Fig. 2.5 The plots of the DOS, (cm-3/eV) [normalized by 1.0 x 1020] versus Energy,  (eV) for Cd3As2, (the curve 

(a)) and also for the HD three band Kane model of Cd3As2(curve (b)) respectively. 

 

 

Fig. 2.6 The plots of the DOS, (cm-3/eV) [normalized by 1.0 x 1020] versus Energy,  (eV) for CdGeAs2, (the curve 

(a)) and also for the HD three band Kane model of CdGeAs2(curve (b)) respectively. 

E

E
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Fig. 2.7 The energy spectrum of InSb has been plotted with the following notations: (a) 3R indicates the real part 

for the perturbed three-band model of Kane; (b) 3Im exhibits the imaginary part ; (c)  3up 

indicates the unperturbed three-band model of Kane; (d) (2) has been EESawn for the perturbed two-band model of 

Kane; (e)  2up indicates the corresponding unperturbed EES; (f) I indicates the perturbed parabolic band model; 

(g)1up exhibits the energy spectrum for unperturbed parabolic energy bands (i.e.  

 

 

Fig. 2.8 The energy spectrum of InAs has been plotted for all the cases of Fig. 7 
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Fig. 2.9 The energy spectrum of In1-xGaxAsyP1-y lattice matched to InPhas been plotted for all the cases of Fig. 7 

 

 

 

Fig. 2.10 The energy spectrum of Hg1-xCdxTehas been plotted for all the cases of Fig. 7 
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                                 Fig. 2.11 The DOS functions have been plotted for all cases of Fig. 7 for n-InSb. 

 

 

 

                               Fig. 2.12 The DOS functions have been plotted for all cases of Fig. 8 for n-InAs. 
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        Fig. 2.13 The DOS functions have been plotted for all cases of Fig. 9 for In1-xGaxAsyP1-y lattice matched to InP. 

 

 

                              Fig. 2.14 The DOS functions have been plotted for all cases of Fig. 7 for Hg1-xCdxTe. 
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Using the other material constants form the Table of the Appendixwe have plotted the EESs for n-

InAs, In1-xGaxAsyP1-ylattice matched to InP and Hg1-xCdxTe for all the cases of Fig. 2.7 in Figs. 8, 

9, 10, respectively. In Figs. 11-14 we have plotted the DOS function for all cases of Fig. 7 for n-

InSb, n-InAs, In1-x GaxAsyP1-y lattice matched to InP and Hg1-xCdxTe, respectively. In this context, 

it may be noted that we have taken the first fifteen terms of the finite series in for the 

purpose of numerical evaluations since we have observed that the contributions of the higher terms 

in the infinite series of become negligible after it.  

This statement is valid for all the cases in general. From Figs. 2.7-2.14, the following points can 

be noted: 

1. When  (e.g. InSb and Hg1-xCdxTe), the imaginary part of the energy spectrum (3Im) is most 

prominent as compared to In1-x GaxAsyP1-y lattice matched to InP where . The imaginary 

part of energy spectrum enters in the conduction band where  (i.e. tails in the conduction 

band) as compared to the cases of n-InAs and In1-x GaxAsyP1-y lattice matched to InP where the 

tails are very small. 

2. When the imaginary part (3Im) is prominent (Figs. 2.1 and 2.3), the tails of the real part is shortened. 

The curves 3Im exhibits tail of the conduction band and with this tail, the imaginary band enters 

into the region of conduction band ( ). For Hg1-xCdxTe and n-InSb, the 3Imtails in to the split-

off band. 

3. When the EESs of the conduction electrons of the materials are defined by the perturbed two-band 

model of Kane, the imaginary part of the energy spectrum vanishes. The same is also true for 

perturbed parabolic band model. The unperturbed bands never exhibit tails in the energy spectrum. 

4. The as given by (1.43) shows oscillations with E for  . The oscillatory part is 

not seen in Fig. 2.11 for . This is because, for , So 

is equal to zero leading to the non-oscillatory result Cos  for . For , the 

value of is significant and oscillations are found for  for , as evident 

from Fig. 2.11. For Cos becomes negative leading to the negative values 

of the DOS. The boundary points M and N in the graph mark the points where the DOS become 

negative. The electrons cannot exist for negative values of the DOS so this region is forbidden for 

electrons, which implies that, in the band-tails, there appears a new forbidden zone in addition to 

the normal band-gap of the semiconductor. It appears beyond the spin-orbit splitting band. No 

oscillations are found for the perturbed two band model of Kane and perturbed parabolic energy 

31( , )gT E 

31( , )gT E 

gE  

gE  

0E 

0E 

N ( , )HD gE  0E 

0E  0E  32 31T ( , ) T ( , ) .g gE E  21( , )gE 

21( , ) 1gE   0E  0E 
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bands respectively although there is tailing in the DOS. For  the oscillations and the 

appearance of new band gap in the tailed zone of the DOS are absent. 

Form the above discussion, we observed that has a tail in the forbidden band and 

extended further. As this tail crosses the forbidden band (when does not 

vanish in the forbidden band for small ) and enters in to the split-off band where  exists and 

in the split-off band the tail vanishes, leaving behind some part of it to cross; then the remaining 

part of the split-off band interacts with the impurity atoms of the doped materials to produce a 

complex band. This interaction produces complex energy spectrum in the heavily doped materials 

whose unperturbed conduction electron are defined by the three-band model of Kane. Obviously 

for  the imaginary part of the complex energy spectrum will be most prominent and depth 

of the tail will be small. In the case when  the tails due to  (i.e. the real part) lies 

almost within the forbidden region; only a very thin tail enters into the spin-split off band. This 

causes a prominent tail of 
31T ( , )gE  and imaginary part is slightly present. For 

gE    (e.g, n-

InAs shown in Fig. 2.8), the tail of 
31T ( , )gE  is present considerably in the forbidden band, but 

31T ( , )gE   does not vanishes to zero at the edge of the light-hole valance band where forbidden 

band ends; rather enters in to the split-off band. In the split-off band (when  is comparable to
gE

), the tail covers the band considerably. So the tail due to 
31T ( , )gE  and the imaginary energy 

spectrum due for to
32T ( , )gE   are present prominently. 

 So from Figs. 2.7-2.10, we observe that the complex energy spectrum is due 

to the interaction of the impurity atoms with the spin orbit splitting constant of the valance band 

for the three-band model of Kane where no real energy band as well as impurity band exist. More 

is the interaction (depends on the cross over region of   by the tail) causes more prominence of 

the imaginary part than the other case. Under undoped condition the band-tailing vanishes and 

there is no interaction with the splitting band. As a result, there exist no complex energy spectrum 

i.e. 
32T ( , )gE  approaches to zero as 0.g   

From the 2D EES in QWs of HD nonlinear optical and tetragonal materials (32), 

we observe that constant energy 2D wave vector surfaces are the series of concentric quantized 

circles in the complex energy plane which is the consequence of non-removable poles in the 

corresponding EES in the absence of band tails. The (174) represents the 2D EES of HD IV-VI 

materials in accordance with the model of Bangert and Kastner and same conclusion is also 

valid. From (43) we have the same inference for QWs of HD III-V materials whose unperturbed 

conduction electrons obey the three band model of Kane, which contains one non-removal pole 

in energy axis. The 3D electrons in HD III-V materials are also described by two band model of 

Kane, parabolic energy bands, model of Stillman et al and the model of Palik et al with the 2D 

EESs as given by (61), (78), (92) and (108) respectively. Since all the said EESs possess no poles 

in the finite energy planes, the constant energy of 2D wave vector surfaces are the series of 

0,g 

31T ( , )gE 

31T ( , )gE  31T ( , )gE 

gE 

,gE 

,gE 
31T ( , )gE 
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concentric quantized circles in the real plane instead of the complex one. The 2D EES (123) in 

HD II-VI materials reflects the fact that the constant energy 2D surface is series of concentric 

displaced quantized circles in the real plane. The 2D EES (153) of HD IV-VI materials 

represents constant energy 2D wave vector surface as the series of concentric quantized closed 

surfaces in accordance with Dimmock model. The 2D EES (214) in QWs of HD stressed Kane 

type materials reflects the fact that the constant energy 2D wave vector surfaces are the series 

of concentric ellipses in the real plane. 

 The influence of quantum confinement is immediately apparent from the said 2D equations 

since the EES depends strongly on the thickness of the quantum-confined materials in contrast 

with the corresponding bulk specimens. The energy decreases with increasing film thickness in an 

quantized way with different numerical magnitudes for QWs of HD materials. It appears that any 

electronic property exhibits spikes for particular values of film thicknesswhich, in turn, depends 

on the particular band structure of the specific material. Moreover, the electron energy in QWs of 

HD compounds can become several orders of magnitude larger than of bulk specimens of the same 

HD materials, which is also a direct signature of quantum confinement.  

It may be noted that with the advent of MBE and other experimental techniques, it is 

possible to fabricate quantum-confined structures with an almost defect-free surface.If the 

direction normal to the film was taken differently from that as assumed in this work, the 

expressions for the EES forQWs of HDmaterials would be different analytically, since the basic 

EESs for many materials are anisotropic. In formulating the generalized electron energy spectrum 

for non-linear optical materials, we have considered the crystal-field splitting parameter, the 

anisotropies in the momentum-matrix elements, and the spin-orbit splitting parameters, 

respectively. In the absence of the crystal field splitting parameter together with the assumptions 

of isotropic effective electron mass and isotropic spin orbit splitting, our basic relation as given by 

(2) converts into the well-known three-band Kane model and is valid for  III-V compounds, in 

general. It should be used as such for studying the electronic properties of n-InAs where the spin-

orbit splitting parameter ( ) is of the order of band gap (Eg). For many important materials 

 and under this inequality, the three band model of Kane assumes the form 

 which is the well-known two-band Kane model. Also under the 

condition, , the above equation gets simplified to the well-known form of parabolic 

energy bands as . It is important to note that under certain limiting conditions, all 

the results for all the models as derived here have transformed into the well-known expression of 

the EES for size quantized materials having parabolic bands. We have not considered other types 

of compounds or external physical variables for numerical computations in order to keep the 

presentation brief.  

It may be noted that the complex band structures have already been studied for bulk 

materials and superlattices without heavy doping[114, 115] and bear no relationship with the 

complex energy spectrum as formulated in this Paper. The physical picture behind the formulation 

of complex energy spectrum in doped small gap materials, whose unperturbed conduction band is 



gE

1 2 2(1 ) / 2g cE EE k m 

gE

2 2 / 2 cE k m
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defined by the three band model of Kane, is the interaction of the impurity atoms in the tails with 

the spin-orbit splitting constant of the valence band as already noted. Besides, the complex spectra 

are not related to same evanescent modes (extinction modes) in the band tails and the conduction 

band. In this context, we wish to further note that many band tails models are proposed using the 

Gaussian distribution of the impurity potential variation. In this Paper we have used the Gaussian 

distribution function of the impurity potential and obtained an exact EES for heavily doped 

nonlinear optical and tetragonal compounds and other materials forming band tails. Our method is 

not at all related with the DOS technique as used in the aforementioned works. From the EES we 

can obtain the DOS but the DOS technique as used in the literature [114, 115] cannot provide the 

EES. Therefore our study is more fundamental than those in the existing literature because the 

Boltzmann transport equation, which controls the study of the charge transport properties of 

semiconductor devices, can be solved if and only if the EES is known. In this context it may be 

noted that although we have used the Gaussian model to explain the band tailing in heavily doped 

materials but it is not the only well-established one. 

It may be noted that the presence of non-removable poles in the EES of the undoped material 

creates the complex energy spectrum of the corresponding heavily doped sample. All 

investigations of the transport properties of modern electronic devices made of heavily doped 

materials should be reformulated since the Boltzmann transport equation which controls all the 

transport properties should be solved at first for complex energy spectrum which is altogether a 

new field of research.  Consequently, all the band structure dependent properties of all the 

electronic devices made of heavily doped materials will change leading to new physical ideas and 

new experimental findings under different physical conditions. We have not considered the many 

body effects in this simplified theoretical formalism due to the lack of availability in the literature 

of proper analytical techniques for including them in the generalized system as considered in this 

Paper. Our simplified approach will be useful for the purpose of comparison when methods of 

tackling the formidable problem after inclusion of the many body effects for the generalized 

systems appear. It is worth remarking in this context that the results of our simple theory, in the 

limit the band gap tends to infinity, get transformed to the well-known formulation for wide gap 

materials having parabolic energy bands. This indirect test not only exhibits the mathematical 

compatibility of our formulation but also shows the fact that our simple analysis is a more 

generalized one, since one can obtain the corresponding results for the relatively wide gap 

materials having parabolic energy bands under certain limiting conditions from our present 

derivation. The experimental results for the verification of the theoretical analyses of this Paper 

are still not available in the literature. It may be noted in this context that our theoretical 

formulation will be useful to analyze the experimental data when they appear. The inclusion of the 

said effect would certainly increase the accuracy of the results, although the qualitative features of 

the DOS discussed in this Paper would not change in the presence of the aforementioned effect. 

An important feature of the present work is that the influence of the energy band parameters on 

the EES and the DOS can be determined for various types of HD materials as considered in this 

Paper. 
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