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Abstract 

A modified gravity theory with f (R) = R2 coupled to a dark energy lagrangian L = −V (φ)F 

(X) , X = ∇µφ∇µφ, gives plausible cosmological scenarios when the modified Friedman 

equations are solved subject to   the scaling relation X( dF )2 = Ca(t)−6.  This relation is already 

known  to be valid, for constant potential V (φ), when L is coupled to Einstein gravity. φ is the 

k-essence scalar field and a(t) is the scale factor. The various scenarios are: (1) Radiation 

dominated Ricci flat universe with deceleration parameter Q = 1. The solution for φ is an 

inflaton field for small times. (2) Q is always negative and we have accelerated expansion of 

the universe right from the beginning of time and φ is an inflaton for small times. (3)The 

deceleration parameter Q = −5, i.e., we have an accelerated expansion of the universe. φ is 

an inflaton for small times. (4)A generalisation to f (R) = Rn  shows that whenever n > 1.780 

or    n < −0.280 , Q will be negative and we will have accelerated expansion of the universe. 

At small times φ is again an inflaton.The results remind us of other physical phenomena where 

existence of scaling relations signal some sort of universality for theories with different 

microscopic lagrangians. Here this is seen in the case of Einstein gravity and modified gravity 

theories. 

Keywords: Lagrangian, Hubble parameter, pressure, dark energy, ac- celeration.
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1. Introduction 

Very often the existence of similar scaling relations in apparently different physi- cal 

systems signify the presence of some sort of universality. A physical system is usually 

typified by some lagrangian from which an action is constructed. There- fore, different 

actions describe different theories. However, if the same scaling relation is valid in 

theories with different actions, then it is possible that these theories may describe 

physical scenarios which have certain aspects in common. The motive of this paper is 

to show that in cosmology such a situation can occur in the context of dark energy 

where the dark energy is realised by 𝑘 − essence scalar fields φ. 

A 𝑘 − essence theory coupled with a non-canonical lagrangian coupled to Ein- stein 

gravity is known to satisfy a scaling relation. Consider the usual Einstein- Hilbert 

action 𝑆EH =  
1

2𝑘
 ∫ 𝑑4 𝑥√−𝑔𝑅 in presence of 𝑘 − essence fieldsφwith a non-canonical 

lagrangian L = V (φ)F (X), X = ∇µφ∇µφ. κ ≡ 8πG, G is the gravitational constant, 𝑔 

is the determinant of the metric and we work in units where  c =  ̄ h =  1.   Relevant  

literature  on  dark  energy  and  𝑘 −   essence  can  be found in 

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]. 

For constant potential 𝑉(𝜑), it follows from the resulting Friedman equations that 

X( dF )2 = Ca(t)−6 [15, 16, 17, 18]. In this work we investigate what happens if this 

same scaling relation is required to be valid  when the same     𝑘 −essence 

lagrangian is coupled to modified gravity or 𝑓(𝑅) gravity theories where f is a 

general function of the Ricci scalar R 

[19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32]. 

There are various ways of obtaining such theories. The modified Friedman 

equations for such 𝑓(𝑅) gravity theories were first obtained in [19]. We shall 

follow the notations of [23, 29]. In one approach, 𝑓(𝑅) theories of gravity are 

obtained by generalising the Einstein-Hilbert action into 

 

                                           𝑆f =  
1

2𝑘
 ∫ 𝑑4 𝑥√−𝑔𝑓(𝑅)                                        (1) 

               where 𝑓(𝑅) = 𝑅 gives the usual Einstein gravity. 
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We work in a Freidman-Lemaitre-Robertson-Walker metric with curvature 

constant k = 0 : 

 

𝑑𝑠2 =  𝑐2𝑑𝑡2 − 𝑎2(𝑡)[𝑑𝑟2 +  𝑟2(𝑑𝜃2 + 𝑠𝑖𝑛2𝜃𝑑𝜑2) (2)  

Adding a matter term SM, the total action 

 

                                              𝑆f =  
1

2𝑘
  

∫ 𝑑4 𝑥√−𝑔𝑓(𝑅) + 𝑆𝑀(𝑔𝜇𝑣, 𝜑)                                       (3)

where φ are generic matter fields. We shall consider a single scalar field only.       The 

field equations are [23, 24, 25, 26, 27, 28, 29]:
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− 
∇ 

 

 

with 

𝑓′(𝑅) 𝑅𝜇𝑣 −  
1

2
𝑓(𝑅) 𝑔𝜇𝑣 −  ∇µ∇𝑣 − 𝑔𝜇𝑣

∇𝛽∇𝛽]𝑓′(𝑅) = 𝑘𝑇𝜇𝑣                           

(4) 

                                                        𝑇𝜇𝑣 =  
−2

√−𝑔

𝛿𝑆𝑀

𝛿𝑔𝜇𝑣                                            (5)  

A prime denotes differentiation with respect to the argument. µ is the covari- 

ant derivative associated with the Levi-Civita connection of the metric. The 00 

component of the field equations Eq.(4) gives the modified Friedmann equations: 

 

                  (
�̇�

𝑎
)

2

- 
1

3𝑓′(𝑅)
(

1

2
[𝑓(𝑅) − 𝑅𝑓′(𝑅) − 𝑅𝑓′(𝑅)] − 3 (

�̇�

𝑎
) 𝑅𝑓′′̇ (𝑅) =  

1

3
 kρ       (6)

while the ii components give 

            2 (
�̈�

𝑎
)

2

+  (
�̇�

𝑎
)

2

+  
1

𝑓′(𝑅)
(2 (

�̇�

𝑎
) �̇�𝑓′′(𝑅) + �̈�𝑓′′(𝑅) +  (�̇�)

2
𝑓′′′(𝑅) −  

 

                               
1

2
[𝑓(𝑅) − 𝑅𝑓′(𝑅)] =  −kp                                                     (7)

              We first recall the relevant equations for the usual case  

                   f (R) = R [15, 16, 17, 18]. 

 

The energy density obtained from Eq.(6) is 

                                                    𝜌 =  (3𝐻2)/𝑘               (8) 

 

while Eq.(7) gives the pressure as 
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                                                    𝑝 =  −
2�̈�

𝑘𝑎
−  

𝐻2

𝑘
                                                                   (9)            

               

 

Differentiating Eq.(8) with respect to time, and using Eq.(9) gives 

 

𝜌 + 3𝐻(𝜌 + 𝑝) = 0̇                   (10) 

Now, as already stated before, the lagrangian of 𝑘 −essence scalar fields φ is non- 

canonical and is of the form L = p = −𝑉(𝜑)𝐹(𝑋) where 𝑉(𝜑) is the potential. The 

energy density is ρ = 𝑉(𝜑)[𝐹(𝑋) − 2𝑋𝐹𝑋 ]with 𝐹𝑋  ≡
𝑑𝐹

𝑑𝑋
.  Substituting  these values 

of ρ and p in Eq.(10) and taking V (φ) = constant one gets 

                             (
𝑑𝐹

𝑑𝑋
+ 2𝑋

𝑑2𝐹

𝑑𝑋2) 𝑎
𝑑𝑋

𝑑𝑎
+ 6

𝑑𝐹

𝑑𝑋
𝑋 = 0                             (11)                                                    

This equation can be integrated to give the scaling relation [15, 16, 17, 18] 

 

                                   𝑋 (
𝑑𝐹

𝑑𝑋
)

2

= 𝐶𝑎(𝑡)−6                                                     (12) 

              C is a constant. 
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− 
Using Eq.(12) and the zero-zero component of Einstein’s field equations an 

expression for the lagrangian for the k essence field can be obtained for a FLRW 

metric. This has been elaborately described in [17] where the scaling relation Eq.(12) 

has been used to eliminate FX . For a homogeneous scalar field φ(t) the lagrangian is 

[17] 

 

                                           𝐿 =  −𝑐1�̇�2 −  𝑐2𝑉(𝜑)𝜑 ̇ 𝑒−3𝑞 (13) 

where q(t) = ln a(t), 𝑐1 = 3(8𝜋𝐺)−1, 𝑐2 = 2√𝐶. The new lagrangian has two 

generalised coordinates q(t) and φ(t). q  has a standard kinetic term while φ  does not 

have a kinetic part. There is a complicated polynomial interaction between q and φ and 

φ occurs purely through this interaction term. 

 

We now consider the case for𝑓(𝑅) = 𝑅. Then Eq.(6) gives for the energy 

density 

 

                               𝜌 =  
3

𝑘
𝐻2 + 

𝑅

4𝑘
+ 

3𝐻

𝑘

�̇�

𝑅
                                        (14)       

while Eq.(7) gives the pressure ( or lagrangian) 

 

                                             𝑝 =  −
2�̈�

𝑘𝑎
−

𝐻2

𝑘
−

2𝐻�̇�

𝑘𝑅
−  

�̈�

𝑘𝑅
−  

𝑅

4𝑘
                        (15)

                      

             Using 
�̈�

𝑎
=  �̇� + 𝐻2we have

      

                   𝜌 + 3𝐻(𝜌 + 𝑝)̇ =  
�̇�

4𝑘
+ 3�̇�

�̇�

𝑘𝑅
− 3𝐻

�̇�2

𝑘𝑅2 + 3𝐻2 �̇�

𝑘𝑅
                           (16)

                

It is readily seen that Eq.(16) reduces to Eq.(10) if the right hand side vanishes i.e. 
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�̇�[𝑅2 + 12𝐻𝑅 −̇ 12𝐻�̇� + 12𝐻2𝑅] = 0 (17) 

i.e.  if either �̇� = 0 or �̇�[𝑅2 + 12𝐻𝑅 −̇ 12𝐻�̇� + 12𝐻2𝑅] = 0.  Now R = 6[Ḣ  + 2H2] so 

that Ṙ  = 6[Ḧ + 4HḢ ].  Using this in Eq.(17) we have two scenarios for which Eq.(16) 

reduces to Eq.(10), viz.: 

 

 

and 

Ḧ + 4HḢ = 0 (18) 

3Ḣ 2 − 2HḦ + 2H2Ḣ  + 8H4 = 0 (19) 

1. Solutions for Hubble parameter 

 

Now we know the conditions (i.e. Eq. (18) or Eq. (19) that the Hubble parameter 

has to satisfy so that the scaling relation Eq. (12) is valid in a modified gravity 

theory with f (R) = R2. 
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1.1 Solutions for Ṙ  = 0 

 

A first integral of Eq.(18) gives 𝑅 =  6(𝐻˙ + 2𝐻2)  =  6𝐴 where A is a constant. 

Case 1: A = 0 , i.e.R = 0 (Ricci flat): 

If the constant A is chosen to be zero then we have 𝑅 =  6(𝐻˙ + 2𝐻2) = 0  so 

      that the emergent spacetime is Ricci flat. A simple integration gives 

                 𝐻 = 1/2𝑡 .  

This implies that the scale factor is a(t) ~ t 1/2  and the cosmology is that of the 

well known radiation dominated universe. From Eq.(14), the energy density is 

 

                                                        𝜌 = 3/4𝑘𝑡2                                                       (20) 

 

because in this case 𝑅 =  6[𝐻˙ + 2𝐻2] = 0. The lagrangian or pressure can be  

obtained from Eq.(15) as 

                                                 𝑝 = 1/4𝑘𝑡2                                                 (21) 

 

                To determine the k-essence scalar field φ recall [17]. Take 𝑉 (𝜑)  =  𝑉 = constant  

                 then one has                                                  

𝐿 =  −𝑉(𝜑)𝐹(𝑋) =  −𝑐1 (
�̇�

𝑎
)

2

−  𝑐2𝑉�̇�𝑎−3

=  𝑐1 (
1

4𝑡2) −  𝑐2𝑉�̇�𝑎−
3

2                                                                                                 (22) 

                    where 

𝑐1 =  
3

𝑘
 

and 𝑐2 = 2√𝐶.  It is to be noted that the equation Eq.(22) incorporates 
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the scaling relation. Eq.(21) and Eq.(22) then give the solution for the k−essence 

scalar field as 

 

                                    

                                                    𝑎 =
1

32𝜋𝐺√𝐶𝑉
𝑡2                                         (23) 

where we have put all integration constants to zero. Now 𝑡 =  
𝑡

𝑡0
 where𝑡0 is the 

present epoch and so t is always less than unity. Now for 0 < t < 2, 

 

ln 𝑡 ~ (𝑡 − 1). So 𝑡1/2 =  𝑒(1 2⁄ ) ln 𝑡~𝑒(1 2)(𝑡−1)⁄ ~ 1 + 𝑡. Hence for small times 

 

  𝜑(𝑡)~ 1 (64𝜋𝐺√𝐶𝑉) + 𝑡/⁄ (64𝜋𝐺√𝐶𝑉) and  this is like the scalar field in “chaotic  

inflation”as in [33]. 

         

       The deceleration parameter 𝑄 =  −(𝑎𝑎)/𝑎2 ̈ = 1 while the equation of state parameter 

𝜔 = 𝑝 𝜌 =  1 3⁄⁄ . So we have a Ricci at (𝑅 =  0) decelerating universe with 

radiation domination. 
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The interesting aspect is that this has been obtained from a modified gravity theory 

having a dark energy constituent satisfying a scaling relation that is also satisfied in 

Einstein gravity. 

Case 2: 𝐴 ≠ 0 𝑖. 𝑒. 𝑅 ≠ 0 ∶ 

If 𝐴 ≠ 0, then a solution for the Hubble parameter is (choosing an integration 

constant to be zero) 

 

 

                    The scale factor is 

then                                     𝐻(𝑡) =

 √
𝐴

2
tanh [√2𝐴𝑡]                                              (24) 

The scale factor is then

                                                            𝑎(𝑡) = 𝑐𝑜𝑠ℎ
1

2[√2𝐴𝑡]                                                   (25)  

                  and the deceleration parameter is               

𝑄 = 1 − 2𝑐𝑜𝑡ℎ2[√2𝐴𝑡] (26) Hence 

the deceleration parameter is always negative as 1 ≤ 𝑐𝑜𝑡ℎ𝑡 ≤ ∞ for 𝑡 ≥ 0. So we 

have accelerated expansion of the universe right from the beginning of time. 

Pressure p now is 

𝑝 =  −(1 𝑘)[2𝐻 ̇⁄ +  3𝐻2 + 𝑅 4⁄ ] (27) 

 

                Putting in 𝑅 = 6𝐴 and 2𝐻 = ̇ 2𝐴 − 4𝐻2 gives 

 

                                 𝑝 = 𝐻2 𝑘 ⁄ −  7𝐴 2𝑘⁄ = (𝐴 2𝑘)⁄ 𝑡𝑎𝑛ℎ2[√2𝐴𝑡] − 7𝐴 2𝑘⁄           (28) 

 

where we have put in H from Eq.(24). 

 

𝑝 =  −𝑐1(𝐴 2)⁄ 𝑡𝑎𝑛ℎ2[√2𝐴𝑡]  − 𝑐2𝑉�̇�𝑐𝑜𝑠ℎ
−3

2⁄ [√2𝐴𝑡]             (29)                                
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Alternatively, using Eq.(22) we have 

                    (𝑑𝜑 𝑑𝑡)⁄ = (7𝐴 2𝑘𝑐2⁄ 𝑉)𝑐𝑜𝑠ℎ
3

2⁄ [√2𝐴𝑡] − (𝐴 2⁄ 𝑐2𝑉)(1 𝑘⁄ + 𝑐1) 

                                    𝑡𝑎𝑛ℎ2[√2𝐴𝑡]𝑐𝑜𝑠ℎ
3

2⁄ [√2𝐴𝑡]    which upon integration gives    

 

                        𝜑(𝑡) =  (√𝐴 √2⁄ 𝑘𝑐2𝑉)𝑠𝑖𝑛 ℎ[√2𝐴𝑡] 𝑐𝑜𝑠ℎ
1

2⁄ [√2𝐴𝑡] −                                                        

                                            (15 √𝐴 √2⁄ 𝑘𝑐2𝑉)𝑖𝐹((𝑖√2𝐴𝑡 2)|2)/3 +⁄  𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡             (30) 

                 where the elliptic function F is defined as 𝐹(𝛼|𝑚) =  ∫ (1 −
𝛼

0

𝑚𝑠𝑖𝑛2𝜃)
−1

2⁄ 𝑑𝜃.   

                 Note that for 𝛼 → 0, 𝐹 → 0. Therefore, in the early universe where𝑡 ≡ 𝑡 𝑡0⁄ ≪ 1, 

                 𝑡0 being the present epoch, the  𝐹 term in Eq.(30) can be safely ignored. Then 

for early for early times 𝜑(𝑡) again qualifies for an inflationary field [33] since the  

Eq.(30) gives 𝜑(𝑡)~𝑐𝑜𝑛𝑠𝑡. +(𝐴 𝑘𝑐2⁄ 𝑉)𝑡 
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 1.2 Solutions for �̇� ≠ 𝟎 

 

If �̇� =  0, then Eq.(19) should hold.  The equation Eq.(19) is readily solved with 

the ansatz 𝐻 = 𝛼 𝑡⁄  𝑤ith 𝛼 a constant.  Using this ansatz ,Eq.(19) gives for 𝛼 = 0 

 

8𝛼2 −  2𝛼 −  1 =  0 (31) 

             

 This is a quadratic in 𝛼 and for real 𝛼 the solutions are 𝛼 = (1 2), (⁄ − 1 4⁄ )  

so that the Hubble parameter solutions corresponding to the two values of α are 

                                                                  𝐻 =  1 2𝑡⁄ ;  

                                                                             −1 4𝑡⁄                                      (32) 

 
 

 

Of these two solutions , we have already encountered the first one. So we  consider 

the other solution only, i.e.  𝐻 =  −1 4𝑡⁄ . This gives the solution for the scale 

parameter as 

                                                 𝛼(𝑡) = 𝑐𝑜𝑛𝑠𝑡. 𝑡−1 4⁄                                  (33) 

The deceleration parameter is now𝑄 = 5. So again we have an accelerated  

expansion owing its origin to dark energy. 

The Ricci scalar is 𝑅 = 6[𝐻 + 2𝐻2̇ ] =  9 4𝑡2⁄ .                         

The energy density using (14) now is 
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                                                       𝜌 =  9 4𝑘𝑡2⁄                                                   (34) 

while from Eq.(15) the pressure is obtained as 

𝑝 =  − 33 4𝑘𝑡2⁄                                                                                 (35) 

As before, equating Eq.(35) to the lagrangian gives 

 

− 33 4𝑘𝑡2⁄ = −𝑐1(�̇� 𝑎⁄ )2 −  𝑐2𝑉�̇�𝑎−3 

=  −𝑐1(1 16𝑡2) − 𝑐2⁄ 𝑉𝜑(𝑐𝑜𝑛𝑠𝑡. )𝑡−3/4̇                              (36) 

 

               Proceeding as before, a solution for the dark energy scalar field is 

obtained as 

 

�̇�(𝑡) = (𝑐𝑜𝑛𝑠𝑡. )𝑡−1 4⁄  (37) 

                 

  Note that we can write 𝜑(𝑡) ≡ (𝑐𝑜𝑛𝑠𝑡. )𝑒−(1 4)𝑙𝑛𝑡⁄ ~ 𝑒−(
1

4
)(𝑡−1)

   for 0 < 𝑡 < 2. 

  In our case this is always true as 𝑡 ≡ 𝑡/𝑡0 always lies between 0 and 1. Therefore                  

                  𝜑(𝑡)~𝑒−1 4(𝑡−1)⁄ = 1 − 𝑡/4 again qualifes for an inationary field [33].
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2.  GENERALISATION TO 𝑓(𝑅) = 𝑅𝑛 

We  shall  now  consider  the  general  case  for  𝑓(𝑅) = 𝑅𝑛 and  for  convenience  

take  κ  =  1.   Then  𝑓′(𝑅) = 𝑛𝑅(𝑛−1);  𝑓′′(𝑅) = 𝑛(𝑛 − 1)𝑅(𝑛−2);  𝑓′′′(𝑅) = 

𝑛(𝑛 − 1)(𝑛 − 2)𝑅(𝑛−3)and Eq.(4) becomes 

 

               𝜌 = 3𝐻2 + (𝑛 − 1)𝑅 2𝑛 + 3(𝑛 − 1)𝑅�̇� 𝑅⁄⁄                       (38) 

so that 

 

                �̇� = 6𝐻�̇� + (𝑛 − 1)�̇� 2𝑛 ⁄ + 3(𝑛 − 1)�̇��̇� 𝑅⁄ + 

                       3(𝑛 − 1)�̈�𝐻 𝑅⁄ − 3(𝑛 − 1)�̇�2𝐻 𝑅2⁄                             (39) 

    

The pressure density is given by 

 

                     𝑝 =  −2�̇� − 3𝐻2 −  (𝑛 − 1)(2𝐻�̇� + �̈�) 𝑅 −⁄  

                            (𝑛 − 1)(𝑛 − 2)�̇�2 𝑅2⁄ − (𝑛 − 1)𝑅 2𝑛⁄                                    (40) 

       

                From Eq.(38) and Eq.(40) we have 

 

                                          3𝐻(𝜌 + 𝑝) =  −6𝐻�̇� + 3(𝑛 − 1)�̇�𝐻2 𝑅⁄ − 3(𝑛 − 1)𝑅�̈� 𝑅⁄  

−3(𝑛 − 1)(𝑛 − 2)�̇�2𝐻 𝑅2⁄                                             (41) 
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Using Eq.(39) and Eq.(41) gives the equation of continuity 

�̇� + 3𝐻(𝜌 + 𝑝) =  (𝑛 − 1)�̇� 2𝑛⁄ + (3(𝑛 − 1)�̇� 𝑅⁄ )[�̇� + 𝐻2 − (𝑛 − 1)�̇�𝐻 𝑅]⁄    (42) 

 

 

For the scaling relation Eq.(12) to be valid, the right hand side of Eq.(42) must  

vanish. This gives (note that 𝑛 ≠ 1) 

 

𝑅[(̇ 1 2𝑛⁄ ) + (3 𝑅)(⁄ �̇� + 𝐻2 − (𝑛 − 1)�̇�𝐻 𝑅)] = 0⁄                   (43) 

 

 

There are two possibilities: 

 

First  �̇� = 6[�̈� + 4𝐻𝐻]̇ = 0  and [(1 2𝑛) + (3 𝑅)(�̇�⁄⁄ + 𝐻2 −                

(𝑛 − 1)�̇�𝐻 𝑅)]⁄ ≠ 0. This gives a solution 𝐻(𝑡) =  1 2𝑡⁄ . This we have already 

encountered and we have a radiation dominated universe. 
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The other solution is obtained when �̇� ≠ 0.  Then 

                          [(1 2𝑛) ⁄ + (3 𝑅)⁄ (�̇� + 𝐻2 − (𝑛 − 1)�̇�𝐻 𝑅 = 0⁄  (44) 

Substituting 𝑅 = 6[�̇� + 2𝐻2] and �̇� = 6[�̈� + 4𝐻𝐻]  ̇ in Eq.(44) and solving for 

H we get 𝐻 = (−2𝑛2 + 3𝑛 + 1)/(2 + 𝑛)𝑡 = (𝑢 𝑡)⁄                                   (45) 

where 𝑢 = (−2𝑛2 + 3𝑛 + 1)/(2 + 𝑛). 

                                                            

So the scale factor is obtained as 

 

𝑎(𝑡)  =  𝑡𝑢 (46) 

The deceleration parameter    

𝑄 =  −[1 + 𝐻 𝐻2⁄ ] now is  

                  𝑄 = −[1 − (2 + 𝑛) (−2𝑛2 + 3𝑛 + 1)]⁄                       (47) 

 

For late time acceleration of the universe Q should always be negative i.e., the term 

within third brackets in Eq.(47) must be positive i.e.,  

1 − (2 + 𝑛) (⁄ − 2𝑛2 + 3𝑛 + 1) > 0 or (2 + 𝑛) (⁄ − 2𝑛2 + 3𝑛 + 1) < 1.  

 This means that whenever  𝑛 < (1 4)(3 − √1 7) =  −0.280⁄  or 

  𝑛 > (1 4)(3 + √17⁄ ) = 1.780 there will be accelerated expansion of the universe.

  

We now determine the k essence scalar field φ. The lagrangian or pressure 

is 
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𝑝 =  −2�̇� − 3𝐻2 − (𝑛 − 1)(2𝐻�̇� + 𝑅)̈ 𝑅 −⁄ (𝑛 − 1)(𝑛 − 2)�̇�2 𝑅2⁄ −  (𝑛 − 1)𝑅 2𝑛⁄                                          

(48)

  

                  Now 

�̇� =  −(𝑢 𝑡2)⁄ . 

Therefore 𝑅 = 6[𝐻 ̇ +

2𝐻2] =  

6𝑢(2𝑢 − 1) 𝑡2⁄

�̇� =  −(12𝑢(2𝑢 − 1) 𝑡3⁄  

�̈� = (36𝑢(2𝑢 − 1) 𝑡4⁄  

Using these expressions in Eq.(48) we get 

                    𝑝 = (−36𝑛4 + 84𝑛3 − 61𝑛2 + 14𝑛 − 1) (𝑛2⁄ + 4𝑛 + 4)𝑡2 = 𝑣 𝑡2⁄     (49) 

4 3 2 

where = (−36𝑛4 + 84𝑛3 − 61𝑛2 + 14𝑛 − 1) (𝑛2⁄ + 4𝑛 + 4)  . Alternatively, the k− 

essence lagrangian (pressure) Eq.(22) gives 

 

                                  𝐿 =  −𝑐1(𝑢2 𝑡2⁄ ) − 𝑐2𝑉(𝑑𝜑 𝑑𝑡)⁄ 𝑡−3𝑢                   (50)

 

Equating Eq.(49) and Eq.(50) and solving for φ(t) 

gives 
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− 
− 

 

 

 

                                     𝜑(𝑡) = 𝐴 − (𝑣 + 𝑐1𝑢2)𝑡(3𝑢−1) 𝑐2⁄ 𝑉(3𝑢 − 1) 

                                          = 𝐴 − 𝐵𝑡(−6𝑛2+8𝑛−1) (2+𝑛)⁄                                              (51) 

where 𝐴 is a constant of integration and𝐵 =  (𝑣 + 𝑐1𝑢2) (𝑐2𝑉(3𝑢 − 1)⁄  . Note that 

we can write 𝛽 = (−6𝑛2 + 8𝑛 − 1) (2 + 𝑛)⁄   

 

 

 

 

 

 

 

 

 

𝜑(𝑡) = 𝐴 − 𝐵𝑡𝛽 = 𝐴 − 𝐵𝑒𝑙𝑛𝑡𝛽
 

       =  𝐴 − 𝐵𝑒𝛽𝑙𝑛𝑡 

      ~𝐴 − 𝐵𝑒𝛽(𝑡−1) 

      ~(𝐴 − 𝐵 − 𝐵𝛽) − 𝐵𝛽𝑡                                    (52) 

  

 

or φ(t) = constant − Bβt (53) 

So φ at small times is again like an inflationary field [9]. 

 

3. CONCLUSION 

The importance of this work is that Einstein gravity and certain f (R) grav- ity 

theories, coupled to the same non-canonical k essence lagrangian, can lead to 

similar cosmological scenarios when a certain scaling relation involving the k 

essence fields is satisfied in both regimes. So although the underlying gravity 

theories are different, the cosmological scenarios are realistically similar. This 

observation is in tune with other branches in physics where existence of scaling 

relations signify various genre of universality for theories with different micro- 

scopic lagrangians. Moreover, as the said scaling relation involves the derivatives of 

ISSN 2688-8300 (Print) ISSN 2644-3368 (Online) JMSCM, Vol. 1, No. 4, August 2020

479 Journal of Mathematical Sciences & Computational Mathematics



 

 

− 

− 

the the dark energy scalar fields only, it may be conjectured that a major con- 

tribution to the cosmological consequences come from the k essence fields. In 

this work, we first discuss a modified gravity theory with  𝑓(𝑅) =  𝑅2 coupled to 

a non-canonical dark energy lagrangian 𝐿 =  𝑉 (𝜑)𝐹 (𝑋), with X = ∇µφ∇µφ 

and V (φ) a constant. The modified Friedman equations are subjected to the 

constraint 𝑋 (𝑑𝐹 𝑑𝑋)⁄ 2
= 𝐶𝑎(𝑡)−6 and solutions obtained for the scale factor 

a(t). The deceleration parameter Q and the k - essence scalar field φ are then 

deter- mined. The following cosmological scenarios are obtained: 

(a)Radiation dominated Ricci flat universe with deceleration parameter Q = 1. 

The scalar field takes the form of an inflaton field for for small times. 

(b)The deceleration parameter is always negative and we have accelerated ex- 

pansion of the universe right from the beginning of time. Here also the scalar 

field is similar to an inflaton field for small times. 

(c)The deceleration parameter Q = 5 and again we have an accelerated ex- 

pansion of the universe with the scalar field akin to an inflaton field for small 

times. 

(d) A generalisation to 𝑓(𝑅) =  𝑅𝑛is then discussed. It is shown that whenever n 

> 1.780 or n < 0.280 , Q will be negative and we will have accelerated expansion 

of the universe. At small times the scalar field again behaves like an inflaton. 
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