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Abstract

Groundwater modeling has become a popular approach and common of conducting groundwater flow
and contaminant transport simulation. Consequently, in order to understand the behavior of groundwater
flow, this study has established and developed conceptual model of groundwater at Phukham Copper -
Gold operations mining. In addition, this study is applied Groundwater Modeling System (GMS) 6.5
software and using MOFLOW Package which employs advanced mathematics as Finite Difference
Method (FDM). Steady Flow model is set up and calibrated within target + 2 meters; then the model is
run in MOFLOW in order to obtain acceptable observed and simulated hydraulic head by adjusting
hydraulic conductivities and recharge values. Recharge rate is adjusted between 2% to 12% from annual
rainfall 0.00475 m/d and it is found out to be 7.22 % or 0.00034 m/d. Model has come up with reasonable
finding. Hence, root mean square error of steady state: layerl, 2, 3 and 4 are 1.840 m, 1.767 m, 1.963 m
and 0.574 m, respectively. The coefficient of determination of steady state for layerl, 2, 3 and 4 are
0.965, 0.96, 0.959 and 0.985, respectively.
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1. INTRODUCTION

This study conducted on groundwater flow modeling in Xaysomboun Province at Phu kham
Copper - Gold operations in Lao PDR. MODFLOW is numerical modeling that is very useful
and necessary for dealing with groundwater, it was programmed in order to encode by
FORTAN language approach,

Groundwater modeling is a significant model to visualize the natural phenomenon aquifer and
bring some of those related data to the computer modeling system. Consequently, The
objectives of the study are to built the conceptual model of groundwater system, simulate and
calibrate groundwater flow modeling in steady state, however, the target of the study is to obtain
properly between observed and computed hydraulic head values based on the component of the
model; besides this simulation will be automatically retrieved groundwater balance from the
conceptual model, by adjusting recharge, horizontal hydraulic conductivity and horizontal
anisotropy.

1 Journal of Mathematical Sciences & Computational Mathematics


mailto:phoummixay2011@gmail.com
mailto:gqtiii@yahoo.com

ISSN 2688-8300 (Print) ISSN 2644-3368 (Online) JMSCM, Vol.2, No.1, November 2020

Conceptual model is built based on borehole geological data which is quite complex geology,
according to fifteen boreholes logging data are input to GMS 6.5 to create solid and grid model
then the model is converted into conceptual model with 3 dimensions in MODFLOW-2000
package which consists of limestone, schist, redbed siltstone and braccia aquifer as shown in
Fig.2, including boundary condition of groundwater modeling.

FDM is a technique of advanced mathematical model which be applied partial differential
equation (PDE) to simulate and solve problem that are cognate to groundwater. MODFLOW is
also numerical model with employing Finite Difference method in order to deal with
groundwater modeling which comprises of steady state package.

The study is monitored and traced groundwater level in order to deal with groundwater flow
which includes fifteen boreholes as shown in Fig.1 and detail of those data will be illustrated in
Table.3. This study will be useful and also being a reference for other proposed future study in
groundwater within this vicinity.

2. THE STUDY AREA.

The study site lies at 279924.53E, 2088841.57N latitude and longitude, respectively, which is
located in Xaysomboun Province in Center of Laos, it is far away from Vientiane capital about
120 km, and most of the area is covered with mountain and forest ( Phu Bia Mining Annual
review, 2009). Hence, the highest elevation is 2800m and the lowest is 240m of mean sea level
(Geography department, 2010).

The study site has surface area approximately 693.3 hectares or 6.933 square kilometers within
the boundary; these area has been operated and developed copper and gold mines since 2008
(Phu Bia Mining Annual review, 2009), within the area consists of monitoring groundwater
level as shown in Fig.1 various color of the symbols.

CAMBORDIA |

Figure.1.Study site and observation points in Xaysomboun Province.
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3. METHODOLOGY.
3.1. MATHEMATICAL MODEL.

The formula below is expressed to three dimensional groundwater flow , which includes
hydraulic conductivities, hydraulic head boundary and initial condition, in this case, it explains
to transient three dimension ( groundwater hydrograph) in difference of aquifer layers and
direction of flow ( Heterogeneous and anisotropic medium) and hydraulic conductivity will be
aligned with the coordinate directions Eq(1) , (McDonald and Harbaugh, 1988). The governing
partial differential equation solved numerically in MODFLOW is given in the following form:

0 oh ﬁh 0 oh

By (it Wy ha +W =S = @

8x( XX@X) ay( ay 62( ) * ot @
Where

K is hydraulic conductivity a long x axe LT, K,y is hydraulic conductivity a long y axe (LT

1), K, is hydraulic conductivity a long z axe (LT™), h is hydraulic head(L),W is volume metric

flux per unit volume represented to sink and or/source of water if W<0.0 flow out of
groundwater system and if W>0.0 flow into groundwater system (T™) , S, is specific storage of

the porous material (L) and t is time of movement (T) (Peter Szucs,et al,2011).
3.2. FINITE DIFFERENCE MODEL

Finite Difference Method (FDM) is a technique of advanced mathematical model, in terms of
mathematical model, the model is used partial differential equation to simulate and solve
problem (Gerald W. Recktenwald,2011), in fact, FDM is a grid system, including row (i),
column(j) and layer(k) of a interested domain, the grid system will be identified and developed
by super imposing a system of nodal point over the problem domain.(Philip B.Bediet et al,
1994). In addition, nodes can be located inside cells (block centered or intersection of grid
system (mesh centered).Hence, aquifer properties and head values will be assumed to be
constant value in a block centered, and finite difference model will not be evaluated the node
points, because the model will not develop that surrounding area (Philip B.Bediet et al., 1994).
Therefore, behind of the model there is an equation term of the mathematical model by
employing Laplace’ equation in three dimensions for steady state groundwater flow to
evaluated the head of the grid system.

0 oh 8h 0 oh
(Kxx _) _(K _(K

Ao z _) +W =0 (2)
OX ox oy 8y 0z 0z
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Figure.2. The index system used for the finite difference (finite-volume) grid.

The interfaces between node (i, j, k) and the six adjacent nodes are shown as shaded surfaces.
3.3. CONCEPTUAL MODEL

3.3.1. GRID DESIGN MODEL

Surface area of the study site approximately 693.3 hectares. Therefore, the case study is
subdivided into various small grids with finite difference in order to easily comprehensive and
more accuracy. In general, the model consists of X, y and z in real projection or i, j and k in the
model as three dimensions which means row, column and thickness of the aquifer layer,
respectively.

The model is constructed based on lithological (boreholes) data which consists of limestone,
schist, redbed siltstone and breccia lithology, and then grid model is designed and consists of
89 rows, 53 column and 4 layers, the length are 2650 m and 4450 m in x and y respectively,
and the horizontal spacing is uniformly with thickness is 247.8 m. Based on this the original
cell starts from 278370 m easting and 2087009 m northing, as groundwater model has classified
into 4 layers, thickness of each layer between 1.2 m to 108.9 m ,1.5 m to 59.6m ,2 m to 57.3m
and 7.8 m to 37.6 m, first, second , third and fourth layer, respectively. Hence numbers of
cells are 18868 cells design and numbers of nodes are 24300 nodes as shown in Fig.3 and Fig.4,
the model is applied boundary matching method to create the 3D MOFLOW maodeling.

3.3.2. INITIAL CONDITION

Starting hydraulic head model is very important for groundwater water modeling they have
shown in Fig.5, if determining the starting hydraulic head is so big and too small, it will take
long time to calibrate and very difficult to have the actual hydraulic head and simulated head
to meet as the purpose of calibration. Therefore, the study has applied elevation from

3dimensional grid model, in this case after input elevation value of the grid cell model, it needs
to do interpolation from the model in order to have very proper starting hydraulic head, and the
model achieves four difference values on individual grid layer.
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3.3.3. BOUNDARY CONDITION

In general, boundary conditions represent to the physical or hydraulic feature of terrain.
Therefore, before establishing the model, boundary condition should be clearly defined and
identified in order to do groundwater modeling. However, there are three different types of the
boundary conditions (Rana Amin Sulaiman Kharmah, 2007) as following:

TYPE-1 Specified head boundaries condition will be used to model boundaries when knowing
the hydraulic head values, in other words know as Dirichlet boundary condition of the model.

1. Specified head boundaries (Dirichlet) h(x,y,z,t) = Constant  (3)

TYPE-2 Specified flux boundaries condition are used to model boundary if flux are known
values, it sometimes is also known as Neumann boundary condition of the model

2. Specified flux boundaries (Neumann) W = Constant 4)

TYPE-3 Head dependent boundaries are used to model boundaries condition; it is depending
on the changing of the hydraulic head for instance: river, stream, lake at the external boundary
condition of the region, and it is also known as Cauchy boundary condition.

3. Head dependent boundaries (Cauchy)%mh = Constant (5)

In fact, among of three boundaries condition are only general concepts of boundary condition
in the model. Therefore, in order to define boundary condition in the groundwater model, it
needs to know the environment of the case study and then can determine the boundary
according to phenomenon of terrain or topography.

NORTH

Figure.3. 3D conceptual model

5 Journal of Mathematical Sciences & Computational Mathematics



ISSN 2688-8300 (Print) ISSN 2644-3368 (Online) JMSCM, Vol.2, No.1, November 2020

As Fig.3 has illustrated in 3dimensional model, boundary condition model has considered based
on the phenomenon physical environment. Therefore, from point A to B is surrounding with
Nam Mo (Mo River), with approximately length 2.8 km which defined as boundary condition
of the model as TYPY-1 ( Dirichlet head) and from point A to C, C to B (ACB) is defined as
no flow boundary condition.
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Figure.4. Finite difference grid model
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Figure.5. Initial hydraulic head contour.

3.4. CALIBRATION METHODS

Calibration target is set up £ 2 meters, groundwater model is run in MOFLOW, and the model
is repeated to run with trials and errors until the result comes up with acceptable observed and
simulated hydraulic head by changing hydraulic conductivities and recharge values (Sandown
Mark et al, 2011). Finally, model come up with reasonable result of each groundwater model

scenario.
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1 n
ME =— h,, —hg), (6
Mean error head n Z‘( ° b (©)

Mean absolute error head

MAE =23y, <, |, (7)
n

i=1

Root Mean Squared Error

Zn:[(hob - hsi )i ]2

RMSE = {|-= (8)
n
Where:
ME: Mean Error m
MAE: Mean Absolute Error m

RMSE: Root Mean Squared Error  m

h,, : Observed hydraulic head of groundwater from actual site m
h,; : Simulated hydraulic head of groundwater from model m

n : Number of observed well of groundwater

i : Order of observed groundwater numbers

3.5. SENSITIVITY ANALYSIS METHOD

Sensitivity analysis is a measure of uncertainty in the calibration model based on conceptual
model and boundary condition of groundwater, so that the recharge and hydraulic conductivities
model to calibrate and know these values (Sandown Mark et al, 2011).

Sensitivity analysis change in hydraulic conductivities based on the calibration procedure, it
actually played with various numbers with range of different individual aquifer and also
spending time as well, in order to deal with calibration target of groundwater modeling
hydraulic conductivities are fixed as constant values, the study are defined horizontal hydraulic
conductivities, horizontal anisotropy then recharge is fixed to calibrate hydraulic head by
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changing hydraulic conductivities with trial and error values until it become acceptable values
as calibration target as intended ,they have shown from Fig.6.

3.5.1. Recharge calibration in the model

Groundwater balance is a part of groundwater modeling, due to inflow and out flow need to be
the same in final summary or difference is not much. Thus, groundwater balance is -0.002 m®/d
and percent discrepancy is 0.00007 m®/d, Recharge rate has adjusted from 2% to 12% from
annual rainfall and it is found 7% is reasonable recharge to groundwater modeling.

Sensitivity Analysis kvyerl Sensitivity Analysis layer 2

Change in Statistical Error{m)

O % b ANC N RO
N
=]

b

2 3 4 5 6 7 8 ] 10 11 12 2 3 4 5 6 7 8 2 10 11 12

Change in Recharge(®s)

('hange n Statstical Exser{m)

Sblbh
[

NARSEpSE, HERENRNNN WY
ANCEAENOAAANONAPRORADGONABEON

oo owae canbNONBORO OBONLO DO
( :
N H

Wlin
NCma

2 3 e s & 7 8 E] 10 11 12 2z 3 <+ 5 3 7 =3 El 10 11 12

Change in Rechargs(?a) Change in Rechargs(®a)

Figure.6. Recharge calibration in the model

Fig.6 has illustrated the variation of statistical error when adjusting percentage and volume of
recharge between 2% to 12%. Therefore, the optimum values are inside the black circles as
shown between red straight lines of every scenario.

Horizontal hydraulic conductivity and horizontal anisotropy values is adjusted when recharges
are fixed and optimum values inside the black circles or Table.1 shows summary of input
parameters when recharge is fixed.
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4. Results and Discussion

Groundwater balance is a part of groundwater modeling, due to inflow and out flow need to be
calculated based on the conceptual model. Therefore, groundwater balance is -0.0023 m%/d and
percent discrepancy is 0.00007 m3/d, recharge rate has adjusted from 2% to 12% from annual
rainfall and it is found 7% is reasonable recharge which infiltrate through fracture and faults of
the aquifer structure to groundwater modeling as shown in Fig.7.

i | Flow Budget J—

Cells Zonss |

zors MEEEE -]

Budget Term
IN-
Constant heads

Recharge

Total IN

ouT:-

Constant heads
Recharge

Total OUT
SUMMARY"
IN-OUT

Percent Discrepancy

Fow Budget for Zone 1
IN-
Constant heads

Recharge

Total IN

ouT:
Constant heads
Recharge

Total OQUT
SUMMARY-
IN-OUT

Percent Discrepancy

Figure.7. Groundwater budget for steady state in study area.

Hydraulic conductivities are depended on material property. Based on boreholes geological
data, study site consists of limestone, schist, redbed siltstone and braccia. Hence, it is very hard
work to achieve correct hydraulic conductivities of individual material. Eventually, it found
appropriate values as following: Horizontal hydraulic conductivities of limestone, schist,
redbed siltstone and braccia are 0.1 m/d, 0.36 m/d, 0.19 m/d and 0.01 m/d, respectively, and
horizontal anisotropy of limestone, schist, redbed siltstone and braccia are 1 m/d, 12 m/d, 0.3
m/d 0.01 m/respectively, the model is defined vertical anisotropy (kh/kv) of each material is 10
m/d as shown in Table.1.
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Table.1. Summary of input parameters to groundwater model

JMSCM, Vol.2, No.1, November 2020

ID Aquifer Kh Hori_anisotropy | Kh/Kv
1 Limestone | 0.1 1 10
2 Schist 0.36 12 10
3 Redbed 0.19 0.3 10
7 Braccia 0.001 0.01 10

The results achieved determinations of coefficient (R?) of individual layer in steady state, in
order to determine confidence of observed and simulated hydraulic head. It needs to know this
value to illustrate the confidence of the model. Therefore, as shown in Fig.8 and Table 2,
coefficient of determination of first, second, third and fourth layer are 0.963, 0.96, 0.959 and 1,
respectively

Table.2. Summary of Statistical error

Layer | ME MAE | RMSE | R?
Layerl | 0.633 | 1.415 | 1.84 0.963
Layer2 | -0.108 | 0.935 | 1.767 | 0.96
Layer3 | -0.67 | 1.125|1.953 | 0.959
Layerd4 | 0.574 | 0.574 (0574 |1

10
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Table.3. Summary of observed, computed head and residual in GMS 6.5

Borehole | Observed | Layerl Layer2
Head

Name Computed Head | Residual | Computed Head | Residual
MB38 628.45 628.61 0.16 628.85 0.40
MB48 628.82 629.35 0.53 628.85 0.034
MB49 627.5 629.36 1.86 627.71 0.21
MB52 628 628.42 0.428 628.55 0.51
MB53 626 626.96 0.96 626.64 0.64
MB16 623.5 619.97 -3.53¢ 624.20 0.70
MB28A | 631.59 631.93 0.34 631.86 0.27
MB28B | 631.07 631.88 0.80 631.75 0.67
MB12A | 633.5 632.274 -1.24 633.06 -0.43
MB12B | 633.82 632.70 -1.1 633.16 -0.65
Cvo01 609.122 610.4 1.28 610.32 1.20
CVvo02 609.118 611.27 2.152 610.53 1.42
Cvo04 611.368 612.30 0.94 611.48 0.11
CV06 613.5 614.76 1.26 613.13 -0.36
MBO05 617.5 622.09 4,593 611.11 -6.38*

1 Fair calibration of MB16,layerl

2 Fair calibration of CV02,layerl

3 Poor calibration of MBO5,layerl

4

Poor calibration of MBO5, layer2
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Borehole | Observed | Layer3 Layer4
Head
Name Computed Head | Residual | Computed Head | Residual
MB38 628.45 628.96 0.51 629.03 0.58
MB48 628.82 627.35 -1.46
MB49 627.5 625.87 -1.62
MB52 628 628.60 0.60
MB53 626 625.45 -0.54
MB16 623.5 624.08 0.58 624.06 0.56
MB28A | 631.59 631.69 0.105
MB28B | 631.07 631.51 0.43
MB12A | 633.5 633.16 -0.33
MB12B | 633.82 633.20 -0.61
Cvol 609.122 609.61 0.49
CV02 609.118 609.79 0.67
Cvo04 611.368 610.64 -0.72
CV06 613.5 612.2 -1.25
MBO05 | 617.5 610.59 -6.90°

5 Poor calibration of MBO5,layer3
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Figure.9. Attribute table generation of observed and computed head layer 1, 2, 3 and 4

13 Journal of Mathematical Sciences & Computational Mathematics



IS

— =
& Plot 2 g X

SN 2688-8300 (Print) ISSN 2644-3368 (Online)

JMSCM, Vol.2, No.1, November 2020

- Lo [ =nr
Computed vs. Observed Values Computed vs. Observed Values
Hzad Hzad
sl 830+
H =
Bl gl
5820+ 58201
615 8154
sl © sl
L. L | 1 L L 1 | L 1 1 L | 1 1 L 1 Il 1 L 1 1 | L 1 1 L L 1 L L L L 1 1 1 1 L L L L 1 L 1 1 1 1 L L 1 L 1 1
810 815 620 2 830 810 815 620 &2 830
Qbserved Observed
Figure.10.Scatter plot of coefficient of determination (hydraulic head layerl and 2)
Plot 4 = LR Plot 6 ==X
Computed vs. Observed Values Computed vs. Observed Values
Hed
838 - E e
5200 a
r eoa5E
830+ E
L 5280+
e275f
525 5270
- H
2 2626
2 2
£ £
Sea0t 5l
52
5250
15+
5245
5240
10+
5236
1 | L 1 L L | 1 L 1 1 | L 1 1 L | L L L 1 | L L 1 L Il Il Il | Il 1 Il
810 BE 820 825 830 835 624 595 525 827 528 529
Observed Qbserved

Figure.11.Scatter plot of coefficient of determination (hydraulic head layer3 and 4)

14

Journal of Mathematical Sciences & Computational Mathematics



ISSN 2688-8300 (Print) ISSN 2644-3368 (Online) JMSCM, Vol.2, No.1, November 2020

655.000

645,000
g3so00 2051009 2031G0Cs
625000
615000 .

o5 2020509

595.000

5000 2 GH0009
I 575000
s65000

ksl

2090008
2089509 T 2089509

2082005 + 2082008

R 2088
2088505 T 2bEEshs
A A 2088005
2088008 -
N 2087509
2087509 -
2087005 ; ; { + -
2087009 i i } e ¢ g ¢ 9 @ b4 2 @
o o e o o o o ® & n -
o o o o o o = T S s @ o s : 0z
I 5 r - I - ™ o m oW oM r r r- r = @ N B
M o o gy Il =] w o [=) [=1 [=] ™ Ll o ~
® w o o © o r- roe - ® o® . -
I [l I~ - @« @ 1 o~ ™ ™ ™ ~
[T R T S E S B

6545000
saas902 051203
8354550
BBEN 2150709
6154780

605.8699
seras3e 2050209

000
g 2091209
635.4880
555620 5090709
8164760
606 9699
seram2090209
5573679

Ao 0g9709 L
66459

sa7.9579

I L EERE ]
sea4se

2083209 T spesz00 4+

2088769 -+ 2088709

2088209 -+ 2088209 A

2087709 T 2087709 4

2087208 T 2087209 T

2088709 t t ¢ t 2086709 t+ t + +
o o ©o o o o r e B B % = o © © o o o
S O 5 &5 B n R mo® omow
B8 2 & 5 2 E F E B B ® 2 @ & o o
& 8 A om o oa =& o v & & & & & &

r
i
I
I
e

Figure.13. Groundwater flow direction from layerl to 4

Fig. 10 and 11 have scattered plot of observed head and computed head in order to compare
how confidence of the model. Therefore, in average model is significantly possible to trust
when considering R? according to Table.2.
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Fig.12. has shown hydraulic head contour which generated from GMS 6.5 in different scenario
layers from layer 1 to 4 with showing computed hydraulic head in green, yellow and red color,
the green color are well calibrated, yellow color are acceptable but red color are poor calibrated,
indicated in Table.3, Then, Fig.13 has illustrated flow direction of groundwater in the model of
each layer, so that flow direction is going to the Nam MO River which lies on the boundary.

5. Conclusions.
The grid system of the groundwater model covered an area of 2650 m and 4450 m with grid

Cells of size 50 m x 50 m and thickness of 247.8 m is represented in four layers with thickness
of each layer by 1.2 m to 78.9 m (top layer), 1.5 m to 59.6 m (first lower layer), 2 m to 47.3 m
(second lower layer) and 7.8 m to 37.6 m (bottom layer), respectively.

Calibration model and sensitivity analysis of groundwater modeling, it is an essential of the
study in order to come up with the agreement between observed and computed hydraulic head
values with trials and errors values to solve the problem, this study has focused on calibration
of input parameters such as: recharge, horizontal hydraulic conductivity and horizontal
anisotropy, the models come up with reasonable result of each scenario. The root mean square
error of steady state of layer 1 to 4 for calibrated outputs are 1.840 m, 1.767 m, 1.963 m and
0.574 m which are within the error tolerance of £ 2 m of hydraulic heads, respectively.
Groundwater balance is a part of groundwater modeling, due to inflow and out flow need to be
calculated based on the conceptual model. Therefore, groundwater balance is -0.0023 m%/d and
percent discrepancy is 0.00007 m3/d. recharge rate has adjusted from 2% to 12% from annual
Rainfall and it is found 7% is reasonable recharge which infiltrates through fracture and faults
of the aquifer structure to groundwater modeling.

Finally, coefficient of determination (R?) of individual layer are depicted Table.2, in order to
determine confidence of observed and simulated head. It needs to know this value to illustrate
the confidence of the model. Thus, coefficient of determination of first, second, third and fourth
layer are 0.963, 0.96, 0.959 and 1, respectively, then, groundwater direction moves from north
to south east that means it flows from sources to NamMo river.
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