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Abstract: 

A ring R satisfies the dual of the isomorphism theorem if R/Ra≅ 1(a) for all elements a of R, where 1(a) 

denotes the left annihilator. We call these rings left morphic. Examples include all unit regular rings and 

certain left uniserial local rings. We show that every left morphic ring is right principally injective, and use 

this to characterize the left perfect, right and left morphic rings. 
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Introduction: 

It is a well-known theorem of Erlich [5] that a map α in the endomorphism ring of a module M is 

unit regular if and only if it is regular and M/ im(α) ≅ ker(α). Our focus is on the case M =RR, 

so if α =. a: RR→RR is right multiplication by the element a ∈ R, the condition becomes  R/ Ra≅

1(a) where 1(a) denotes the left annihilaror. We say that the ring R is left morphic if every element 

satisfies this condition. We begin (Theorem 9) by characterizing the left morphic , local rings with 

nilpotent radical (and call these rings left ‘special’); in particular we show that these rings are all 

left artinian. We show (Theorem 29) that a semiperfect left morphic ring is a finite product of 

matrix rings over local left morphic rings, we use this result to characterize ( in Theorem 35) the 

left perfect , left and right morphic rings as the finite products of matrix rings over left and right 

‘special’ rings. 

Along the way, we show (Theorem 24) that every left morphic ring is right principally injective 

[11]. With this we see that the left morphic rings R with ACC on right annihilators are left artinian 

, and have the property that eRe is left ‘special’ for every local idempotent e in R (Theorem 31). 

In fact, we show that if R is left morphic then eRe is also left morphic for every idempotent ∈ R . 

However, we give examples to show that the matrix ring Mn(R) need not be left morphic, and so 

‘left morphic’ is not a Morita invariant (unlike ‘unit regular’). 

Throughout this paper every ring R is associative with unity and all modules are unitary. If M is 

an R-module we write J(M), soc (M) and Z(M) for the Jacobson radical, the socle ,and the singular 

submodule of M, respectively . We often abbreviate J(R) = J, and we write U = U(R) for the group 

of units of R. A submodule N ⊆ M is said to be an essential submodule (written N ⊆essM) if N ∩
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K ≠ 0 for every nonzero submodule K of M. We denote left and right annihilators of a subset X ⊆

R by 1(X) and r(X) respectively , and we write ℤ for the ring of integers and ℤn for the ring of 

integers modulo n. 

𝟏.  Examples: 

If R is a ring , an element a in R is called left morphic if R/Ra≅ 1(a). The ring itself is called a left 

morphic ring if every element is left morphic. These rings are our primary interest in this paper, 

and the following lemma will be used frequently. 

Lemma 1. The following are equivalent for an element a in a ring R: 

 1. a is left morphic , that is R/Ra≅ 1(a). 

 2. There exists b ∈ R such that Ra= 1(b) and 1(a) = Rb. 

 3. There exists b ∈ R such that Ra= 1(b) and 1(a) ≅ Rb. 

Proof: 

Given (1), let σ: R/Ra → 1(a) be an isomorphism , and put 

b = (1 + Ra)σ.Then Rb = im(σ) = 1(a) because σ is onto, and 1(b) = Ra because σ is one-to-

one . Hence (1) ⇒ (2), (2) ⇒ (3) is clear. But if (3) holds then R/Ra= R/1(b) ≅ Rb ≅ 1(a). 

An elementary argument using condition (2) in Lemma 1 shows that 

Example 2.  

A direct product of rings is left morphic if and only if each factor is left morphic. 

It is clear that every unit and every idempotent in a ring R, is left (and right) morphic. The following 

lemma will be referred to several times. 

Lemma 3.  

If a is a left morphic element in a ring R, the same is true of au and ua for every unit u in R. 

Proof: 

Choose b ∈ R such that Ra = 1(b) and Rb = 1(a). Then R(ua) = Ra = 1(b) = 1(bu-1) and 

R(bu-1) = 1(a)u-1= 1(ua), so ua is left morphic. Again, R(au) = 1(b)u = 1(u-1b) and R(u-

1b) = Rb = 1(a) = 1(au). 

An element a in a ring R is called (unit) regular if aba = a for some (unit) b ∈ R, and the ring R is 

called a (unit) regular ring if every element has the property. If a is unit regular, say aua = a where 
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u is a unit, and if e = ua, then a = u-1e is left and right morphic by Lemma 3 because e2= e. This 

gives a very simple proof of the following important known result of Erlich [5]. 

Example 4. 

Every unit regular ring is left and right morphic. 

The converse of the assertion in Example 4 is false: The ring ℤ4 of integers modulo 4 is left and 

right morphic by Lemma 7 below. However, we can ask: 

Question . If R is left and right morphic and J = 0, is R (unit) regular? 

To show that the answer is ‘yes’ it is enough to show that R is regular by the following theorem 

of Erlich [5]. For completeness, we include a simple proof of this result that provides an explicit 

formula for the middle unit. 

Proposition 5. (Erlich). If a ∈ R is both regular and left morphic , then a is unit regular. 

Proof: 

Let axa = a, and assume that Ra = 1(b) and 1(a) = Rb for some  

b ∈ R. Write u = xax + b, so that aua = a. To see that u is a unit, observe first that 1 − ax ∈

1(a) = Rb, say 1 − ax = yb, y ∈ R. If we write v = a + y(1 − xa), it is a routine matter to verify 

that vu = 1. To show that uv = 1, it suffices to show that 1(u) = 0. So suppose that ru = 0, that 

is r xax + rb = 0. Right multiplication by a gives  

rxaxa = 0, whence rxa = 0. It follows that rb = 0, so r ∈ 1(b) = Ra, 

Say r = ta. But then 0 = rxa = taxa = ta = r, as required. 

Camillo and Yu [3] show that every unit regular ring is clean (where a ring is called clean if every 

element is the sum of a unit and an idempotent). Hence we ask: 

Question: 

Is every left and right morphic ring clean? 

Note that Camillo and Yu show that every semiperfect ring is clean, so Example 8 below is clean 

but not right morphic. 

The following properties of left morphic rings will be used repeatedly. Recall that a ring R is called 

directly finite if ab = 1 in R implies that  

ba = 1.  

Proposition 6. If a ∈ R is left morphic, the following are equivalent: 
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(1) 1(a) = 0.  

(2) Ra = R.  

(3) a ∈ U.  

In particular, every left morphic ring is directly finite. 

Proof: 

Choose b ∈ R such that Ra = 1(b) and 1(a) = Rb.Then 1(a) = 0 if and only if b = 0, and Ra =

R if and only if b = 0. This proves that  

(1) ⟺ (2), and these certainly are equivalent to (3). To see that R is directly finite, suppose that 

uv = 1 in R. Then 1(u) = 0 so u is a unit  

(by (1)⇒ (3)) and v = u-1. 

Thus a polynomial ring R[x] is never left (or right) morphic because 1(x) = 0, and the only left 

morphic domains are the division rings. 

The next lemma gives another source of examples of left morphic rings. Recall that a ring R is 

callrd local if it has a unique maximal left (or right) ideal, equivalently if R/J is a divison ring, 

equivalently if R − J consists of units. 

Lemma 7. If a ring R has a unique left ideal , L ≠ 0, R then R is left morphic. 

Proof: 

Let a ∈ R. To show R is left morphic, we must show that ‘a’ is left morphic. Since R has unique 

left maximal ideal i.e, R is local. So let  

a ≠ 0 ∈ L. Then = Ra . Also, as a ≠ 0 ⇒ I(a) ≠ R. (by definition) 

We will show I(a) ≠ 0. Suppose I(a) = 0 ⇒ f: R → Ra defined by  

f(r) = ra is an isomorphism. 

⇒ R ≅ Ra ⇒ 0 ⊆ La ⊂ L  

Which is contradiction. 

Hence , I(a) ≠ 0 ⇒ I(a) = L. 

⇒ I(a) = Ra ⇒ a is left morphic. 

⇒ R is left morphic. 
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Example 8. 

Let F be a field with an isomorphism x → x̅ from F to a subfield F̅ ≠ F. Let R denote the left F-

space on basis {1,c} where c2= 0 and cx = x̅c for all x ∈ F. Then R is a left artinian , local, left 

morphic ring that is not right morphic . 

Proof: 

One verifies that Rc = Fc = J, and that 0, J and R are the only left ideals of R. Thus R is local, and 

it is left morphic by Lemma 7. Choose  

y ∈ F − F̅ and put a = yc; we show that a is not right morphic. Suppose that b ∈ R exists such that 

aR = r(b) and r(a) = bR. Then 0 ≠ b ∈ J, say b = xc where 0 ≠ x ∈ F. Hence r(b) = Fc = J, so 

aR = J. In particular c ∈ aR, so c = yz̅c for some z ∈ F. It follows that  

y = z̅-1∈ F,̅ contrary to our choice . 

The ring in Example 8 turns out to be a prototype for all local, left morphic rings with nilpotent 

Jacobson radical. 

Theorem 9. 

The following conditions are equivalent for a ring R: 

(1) R is left morphic, local and J is nilpotent. 

(2) R is local and J = Rc for some c ∈ R with cn= 0, n ≥ 1. 

(3) There exists c ∈ R and n ≥ 1 such that cn-1≠ 0 and  

R ⊃ Rc ⊃ Rc2⊃ ⋯ ⊃ Rcn= 0 are the only left ideals of R. 

(4) R is left uniserial of finite composition length. 

(5) There exists c ∈ R such that cn= 0, n ≥ 1, and  

R = {uck|k ≥ 0, u ∈ U}. 

If c is as in (3) then 

(a) 1(ck) = Rcn-k and Rck−Rck+1= Uck for 0 ≤ k < n. 

(b) soc(RR) = Rcn-1 is simple and essential in RR. 

© Rck= Jk for 0 ≤ k ≤ n. 
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Proof: 

(1) ⇒ (2). If Jn= 0 but Jn-1≠ 0, n ≥ 1, let 0 ≠ b ∈ Jn-1. Then  

J ⊆ 1(b) ≠ R so J = 1(b) because R is local. Since R is left morphic, 

1(b) = Rc for some c ∈ R, and cn∈ Jn= 0. 

(2) ⇒ (3). Choose c as in (2) and assume that cn-1≠ 0. Observe first that if ck≠ 0 then Rck⊃ Rck+1. 

For if ck= rck+1, r ∈ R, then  

(1 − rc)ck= 0, whence ck= 0 because c ∈ J. Hence 

  R ⊃ Rc ⊃ Rc2⊃ ⋯ ⊃ Rcn= 0, cn-1≠ 0. 

Claim 1. Rck−Rck+1= Uck for 0 ≤ k < n. 

Proof. 

Let x be an element of Rck−Rck+1, say x = uck, u ∈ R. Then u ∉ Rc = J because x ∉ Rck+1, so u is 

a unit because R is local. Hence x ∈ Uck. Conversely, if x = uck, u ∈ U, then x ∉ Rck+1 because 

otherwise we would have ck= u-1x ∈ Rck+1. This proves Claim 1. 

Now let L ≠ 0 be a left ideal of R. Since L ⊆ Rc0= R and L ⊈ Rcn= 0, there exists k =

0,1, … . , n − 1 such that L ⊆ Rck and L ⊈ Rck+1.If  

x ∈ L − Rck+1 then x = uck , u ∈ U, by Claim 1, so ck= u-1∈ L.  

Hence L = Rck. 

(3) ⇒ (4). This is clear. 

(4) ⇒ (5). If R ⊃ L1⊃ L2⊃ ⋯ Lm= 0 is the lattice of left ideals of R, then R is local and J = L1=

Rc where c is any element of L1−L2. Hence 

cn= 0 for some n because R is left artinian. If r ∈ R, we must show that  

r = uck with u ∈ U and k ≥ 0. This is clear if r = 0 or r ∉ J (because R is local). If 0 ≠ r ∈ J =

Rc, write r = s1c. If s1∈ U we are done; otherwise s1∈ J and we obtain r = s2c
2. Continuing in this 

way completes the proof because c is nilpotent. 

(5) ⇒ (1). Choose c as in (5). Then J ⊆ Rc because R − Rc consistsof units by (5); we claim that 

J = Rc, that is c ∈ J. Indeed, if r ∈ R then 
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1 − rc ∉ Rc by (5) because c is not a unit, so 1 − rc is a unit for every r ∈ R. Hence J = Rc, and 

so R is local by (5). 

Claim 2. 

1(ck) = Rcn-k for 0 ≤ k < n. 

Proof. 

It is clear if k = 0, n. We have Rcn-k⊆ 1(ck) because cn= 0. Conversely, let x ∈ 1(ck). Since the 

conditions in (2) are satisfied for R, Claim 1 gives  

x = ucm,u ∈ U, m ≤ n. Then 0 = xck= ucm+k so cm+k= 0. This means that m + k ≥ n, so m ≥ n −

k, whence x = ucm∈ Rcn-k. 

This proves Claim 2. 

Now suppose that a ∈ R, say a = uck,u ∈ U, k ≥ 0. Then  

1(a) ≅ 1(a)u = 1(ck) = Rcn-k by Claim 2; and Ra = Ruck= Rck= 1(cn-k), again by Claim 2. This 

proves (1). 

Finally, (a) follows from Claims 1 and 2, and (b) follows from (3). We prove (c) by induction 

on k, the case k = 0, 1 being clear by (2). If  

Jk= Rck for some k, then Jk+1= J. Rck⊆ J. ck= Rc. ck= Rck+1. Since c ∈ J, this proves ©. 

For convenience , we refer to the rings in Theorem 9 as left special rings. Note that the left special 

rings with J = 0 are just the division rings. 

Corollary 10. 

Let R be left special with J = Rc as in Theorem 9(2). If R is also right special, then J = cR (and 

so the left-right analogues of the properties in Theorem 9 hold). 

Proof. 

The case J = 0 is clear,so assume J ≠ 0 and let J = bR. Then b ∈ Rc and b ∉ J2= Rc2 because J2≠

J by Theorem 9. Hence b = uc where u is a unit of R (again by Theorem 9), and so cR = u-1bR =

u-1J = J. 

Example 11. 

The ring R in Example 8 is left special but not right special. 

Proof. 
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If R were right special then (using the notation of Example 8) we would have J = cR = F̅c by 

Corollary 10, and hence would contradict the fact that F̅ ≠ F. 

Note that every left special ring R is a left duo ring (that is every left ideal is a right ideal). However 

if F is a field then M2(F) is a left and right morphic ring (it is unit regular), but is neither left nor 

right duo. 

If p is a prime , the ring ℤpn is left and right special for every n≥ 1 by  

Theorem 9. Hence Example 2 gives: 

Example 12. 

The ring ℤn of integers modulo n is left and right morphic for every  

n ≥ 2.  

Note that every proper image of the ring ℤ of integers is morphic , but ℤ itself is not morphic. In 

fact , a similar argument shows that every proper image of any commutative principal ideal domain 

is morphic. 

A ring R is said to be left Kasch if every simple left R-module embeds in  

RR, equivalently if r(L) ≠ 0 for every (maximal) left ideal L of R. In a left morphic ring this 

condition has profound implications for the maximal left ideals. 

Proposition 13. 

The following are equivalent for a left morphic ring R: 

(1) R is left Kasch. 

(2) Every maximal left ideal of R is an annihilator. 

(3) Every maximal left ideal of R is principal. 

Proof. 

(1) ⇒ (2) holds without the left morphic hypothesis. 

(2) ⇒ (3). If L is a maximal left ideal of R, let L = 1(X) by (2) where X is a nonempty subset of 

R. If 0 ≠ a ∈ X, then L ⊆ 1(a) ≠ R so, again , 

L = 1(a) by maximality. Hence L = Rb for some b ∈ R because R is  

left morphic. 
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(3) ⇒ (1). If L is a maximal left ideal of R, let L = Rb, b ∈ R, by (3). By the left morphic 

hypothesis let Rb = 1(a) for some a ∈ R. Then 

0 ≠ a ∈ r(L), and (1) follows. 

Question. 

If R is a left morphic, left Kasch ring, is R right Kasch? 

2. Corners and matrix rings 

We are going to prove that if R is left morphic the same is true of the corner ring eRe for any e2=

e ∈ R. The following lemma stems from a result of Lam and Murray [9] in the unit regular case. 

Lemma 14. 

Let e2= e ∈ R and write f = 1 − e. The following conditions are equivalent for a ∈ eRe. 

(1) a is left morphic in eRe. 

(2) a + b is left morphic in R for all left morphic elements b in fRf. 

(3) a + b is left morphic in R for all units b in fRf. 

(4) a + f is left morphic in R. 

(5) a + b is left morphic in R for some unit b in fRf. 

Proof. 

First, (1) ⇒ (2) follows by Example 2 if we view a + b as in eRe × fRf, and (2) ⇒ (3) ⇒ (4) ⇒

(5) is clear. Given b as in (5), choose c ∈ R such that 1(a + b) = Rc and 1(c) = R(a + b). We 

show that c ∈ eRe, 

1eRe(a) = (eRe)c, and 1eRe(c) = (eRe)c. 

To see that c ∈ eRe, note first that 0 = (a + b)c = ac + bc ∈ eR ⊕ fR, so bc = 0. As b is a unit 

in fRf, it follows that fc = 0, that is  

ec = c. Similarly ce = c, so c ∈ eRe. 

Next 1eRe(a) = (eRe)c. Indeed, let xa = 0 where x ∈ eRe. Then  

x ∈ 1(a + b) = Rc so x ∈ eRe ∩ Rc = (eRe)c by hypothesis 

(since c ∈ eRe). Conversely, let x ∈ (eRe)c. Then  

x ∈ Rc = 1(a + b), so 0 = x(a + b) = xa and we have x ∈ 1eRe(a). 
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Finally, we have (eRe)a = (eRe)(a + b) ⊆ R(a + b) = 1R(c), and it follows that (eRe)a ⊆

1eRe(c). Conversely, if x ∈ 1eRe(c) then 

x ∈ 1R(c) = R(a + b), so x = exe ∈ (eRe)a.  

This proves that 1eRe(c) = (eRe)a. 

Note that Lam and Murray [9] construct a regular ring R and an element a ∈ eRe, e2= e ∈ R, such 

that a is unit regular in R but not in  

eRe. Hence a is left morphic in R but not in eRe  (by Erlich’s theorem because eRe is regular – 

see proposition 5). However, the left morphic condition passes from a ring R to any corner of R. 

Theorem 15. 

If R is a left morphic ring the same is true of eRe for every idempotent  

e ∈ R.  

Proof. Write f = 1 − e. If a ∈ eRe then a + f is left morphic by hypothesis, so the result follows 

from Lemma 14. 

Any hope that ‘left morphic’ is a Morita invariant is dashed by the following example. 

Example 16. 

If R is the ring of Example 8 then R is left morphic but M2(R) is not left morphic. 

Proof. 

We use the notation of Example 8, where it is shown that R is left morphic . If y ∈ F − F̅, we show 

that 

                                        λ = [
c yc
0 0

] 

is not left morphic in S = M2(R). Since 1R(c) = J = Fc, we have 

                                  1S(λ) = [
Fc R
Fc R

]. 

Suppose there exists μ ∈ S such that Sλ = 1S(μ) and Sμ = 1S(λ). Then μ has the form  

                                μ = [
xc r
zc s

], 

and the condition λμ = 0 implies that cr + ycs = 0. If we write  

r = z1+w1c and s = z2+w2c in R, then cz1+ycz2= 0, whence  

ISSN 2688-8300 (Print) ISSN 2644-3368 (Online) JMSCM, Vol.2, No.1, November 2020

65 Journal of Mathematical Sciences & Computational Mathematics



z̅1+yz̅2= 0, a contradiction if z̅2≠ 0 because y ∉ F̅. So z̅2= 0, whence  

z̅1= 0 and so z1= 0 = z2. It follows that  

                             μ = [
xc w1c
zc w2c

] 

is in M2(J), and hence that  

                            [
Fc R
Fc R

] = 1S(λ) = Sμ ⊆ M2(J), 

a contradiction. 

The next proposition identifies one situation where Mn(R) is left and right morphic. 

Theorem 17. 

Let R be a left and right special ring. Then Mn(R) is left and right morphic for each n ≥ 1. 

Proof. 

Let λ ∈ Mn(R). Observe that if λ → μ in Mn(R) by row or column operations then (by Lemma 3) λ 

is left morphic if and only if μ is left morphic. Since R is left and right special, let J = J(R) = Rc =

cR where  

cm= 0 (as in Corollary 10). Hence λ has the form λ = [uijc
kij] where, for each i and j , uij is a unit 

and 0 ≤ kij≤ m. Using row and column operations we may assume that ck11 is the smallest power 

of c appearing in row 1 or column 1 of λ. Then, again using row and column operations, we may 

assume that λ has the form 

                            λ = [
ck11 0

0 μ
] 

where μ ∈ Mn-1(R). Continuing we may assume that λ = diag(ck11,….cknm) is a diagonal matrix. 

Since each ckii is left morphic it follows that λ is left morphic . 

Question.  

If R is left and right morphic, is the same true of M2(R)? Equivalently (with Theorem 15), is ‘left 

and right morpohic’ a Morita invariant? 

This is true if R is unit regular [6, Corollary 3], but see Example 16. 

The next result gives insight into when a matrix ring is left morphic. Recall that a Morita context 

is a four-tuple (R, V, W, S) where V =RVS and W =SWR are bimodules and there exist 

multiplications  
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V × W → R and W × V → S such that 

                                    C = [
R V
W S

] 

is an associative ring with the usual matrix operations (called the context ring). 

Proposition 18. 

Let C = [
R V
W S

] be a context ring and assume that C is left morphic. If either VW ⊆ J(R) or WV ⊆

J(S), then V = 0 and W = 0. 

Proof. 

Assume that WV ⊆ J(S); the argument is similar if VW ⊆ J(R). Let  

v ∈ V, and write λ = [
0 v
0 0

] in C. Then 

                       1C(λ) = [
1R(v) V
1W(v) S

]. 

Let μ = [
a v0

w0 b
] ∈ C be such that 1C(λ) = Cμ and 1C(μ) = Cλ. Then 

 λμ = 0 implies vb = 0, and Cμ = 1C(λ) gives Wv0+Sb = S. In particular , WV + Sb = S so Sb =

S because WV ⊆ J(S). It follows that b is a unit because S is left morphic by Theorem 15. Hence 

v = 0 

(because vb = 0) and so V = 0. Thus VW = 0 so, similarity,W = 0. 

Corollary 19.  

Let e and f be orthogonal idempotents in a left morphic ring R. If  

eRf ⊆ J then eRf = 0 = fRe. 

Proof. 

We have the pierce decomposition (e + f)R(e + f) ≅ [
eRe eRf
fRe fRf

] so Theorem 15 and proposition 

18 apply. 

If e ∈ R is an idemptent and eR(1 − e) = 0, then [(1 − e)ReR]2= 0. Hence, if R is semiprime (in 

particular, unit regular),we have  

[(1 − e)Re = 0 and e is central. This holds in any left morphic ring by Corollary 19: 
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Corollary 20. 

If e is an idempotent in a left morphic ring R, then e is central if and only if eR(1 − e) = 0 

(equivalently (1 − e)Re = 0). 

We can remove the restriction that e and f are orthogonal in Corollary 19 if eRf = 0. 

Theorem 21. 

If e and f are idempotents in the left morphic ring R, then eRf = 0 if and only if fRe = 0. 

Proof. 

Assume that eRf = 0, and write h = f − fe. Since ef = 0, h is an idempotent orthogonal to e, and 

eRh = 0. Hence hRe = 0 by Corollary 19, so fre = fere for each r ∈ R. In particular, if a ∈ fRe 

we have  

a = fae = feae = 0 because ea ∈ e(fRe) = 0. 

We are going to apply proposition 18 to idempotents in a left morphic ring, and the next result will 

be needed. An idempotent e2= e ∈ R is called full (in R) if ReR = R. 

Lemma 22. 

If e2= e in a ring R, then 1 − e is full in R if and only if  

eR(1 − e)Re = eRe.  

Proof. 

For convenience , write e̅ = 1 − e. If r ∈ R, the fact that  

r = ere + ere̅ + e̅re + e̅re̅ shows that R = eRe + Re̅R as ℤ-modules. If eRe̅Re = eRe this gives 

R = Re̅R so e̅ is full in R.  

The converse is clear. 

An idempotent e in ring R is called local if eRe is a local ring. 

Theorem 23. 

Let R be a left morphic ring. 

(1) If e2= e ∈ R is local , then 1 − e is either full or central. 

(2) If e and f are orthogonal local idempotents in R then eRf ≠ 0 if and only if eR ≅ fR. 

Proof. 
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(1) Write e̅ = 1 − e. If e̅ is not full then eRe̅Re ≠ eRe by Lemma 22, so  

eRe̅Re ⊆ J(eRe) because eRe is local. But then applying proposition 18 to the context ring 

                C = [
eRe eRe̅
e̅Re e̅Re̅

] 

gives eRe̅ = 0 = e̅Re, so e is central and (1) follows. 

(2) If eRf ≠ 0 then eRf ⊈ J by Corollary 19, so choose  

0 ≠ a ∈ eRf − J and define λ: fR → eR by λ(x) = ax . Then  

im(λ) = aR ⊈ eJ, so λ is epic because e is local. But then λ splits because eR is projective , and so 

λ is monic because fR is indecomposable. Hence λ is an isomorphism , so eR ≅ fR. Since the 

converse is clear, this proves (2). 

Observe that the only property of the local idempotent e used in (1) of Theorem 23 is that J(eRe) =

eJe is the unique maximal two sided ideal of eRe. 

3. P-injectivity 

A ring R is called right P-injective (more formally, right principally injective ) if, for every a ∈ R, 

every R-linear map γ: aR → RR can be extended to RR→ RR ,that is γ = c. Is left multiplication by 

some c ∈ R. Hence every regular ring is both right and left P-injective. It is a routine matter to 

verify (see [11, Lemma 1.1]) that R is right P-injective if and only if 1r(a) = Ra for each a. But if 

R is left morphic, and if Ra = 1(b) for some b ∈ R, then 1r(a) = 1r(Ra) = 1r1(b) = 1(b) = Ra. 

This proves (1) in the following result. 

Theorem 24. 

Let R be a left morphic ring. Then: 

(1) R is ring P-injective. 

(2) Z(RR) = J. 

(3) soc(RR) ⊆ soc(RR). 

(4) If kR is simple, k ∈ R, then Rk is simple. 

Proof. 

(1) is provd above, (2) is by [11, Theorem2.1], and (3) and (4) are by  

[12 , Theorem 1.14]. 
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Example 25. 

There exists a right and left P-injective ring that is neither left nor right morphic. 

Proof. 

Let R be a regular ring that is not unit regular, for example R = end(V) where V is a vector space 

of countably infinite dimension over a field. Then R is right (and left) P-injective because every 

principal right (left) ideal is a direct summand, but it is not left (or right) morphic because it is not 

directly finite. 

Example 26. 

The ring in Example 8 is right P-injective but not right morphic. 

Proof. 

R is left morphic by Lemma 7, and hence right P-injective (by Theorem 24).  However , R is not 

left P-injective (indeed if y ∈ F − F̅, the map  

Fc →RR given by xc ↦ xyc does not extend to RR →RR). Hence R is not right morphic (by Theorem 

24). 

Proposition 27. 

Let R be a left morphic ring (hence right P-injective ). Then R is left P-injective if and omly if it 

is right morphic. 

Proof. 

Assume that R is left P-injective , so r1(a) = aR for each a ∈ R. Given a ∈ R, choose b ∈ R such 

that Ra = 1(b) and Rb = 1(a). Then 

r(a) = r(Ra) = r1(b) = bR by the left P-injective hypothesis. Similarly, aR = r(b), so R is right 

morphic.  

The converse is by Theorem 24. 

In a left morphic ring R we know that Z(RR) = J by Theorem 24. We conclude this section with 

some observations concerning the left singular ideal Z(RR). Recall that a ring R is said to be 

reduced if it has no nonzero nilpotent elements. 

Proposition 28. 

Let R be a left morphic ring. 

(1) Z(RR) ⊆ J. 
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(2) If R is reduced then Z(RR) = 0 and R is a left duo ring. 

(3) The following are equivalent: 

       (a) RR is uniform. 

       (b) Z(RR) is the set of nonunits. 

      (c) R is local and Z(RR) = J. 

Proof. 

If a ∈ R, let b ∈ R satisfy Ra = 1(b) and Rb = 1(a). 

(1) If a ∈ Z(RR) then 1(a) ⊆ess
RR, so 1(1 − a) = 0 

(because 1(a) ∩ 1(1 − a) = 0 ). Hence 1 − a is a unit by proposition 6 so a ∈ J. 

(2) If a and b are as above, we have (Ra ∩ Rb)2⊆ Ra. 1(a) = 0 because xa = 0 implies ax =

0, so Ra ∩ Rb = 0. Hence  

Ra ∩ 1(a) = 0 so, if a ∈ Z(RR) then Ra = 0. Hence Z(RR) = 0. For the rest, it suffices to show 

that aR ⊆ Ra. If r ∈ R then b(aR) = 0 so  

(ar)b = 0 by hypothesis. Hence ar ∈ 1(b) = Ra, as required. 

(3) Given (a), let a be a nonunit and write 1(a) = Rb, b ∈ R. Then  

b ≠ 0 by proposition 6, so 1(a) = Rb ⊆ess
RR by (a), and it follows that  

a ∈ Z(RR). This proves (b). Given (b) the set of nonunits is an ideal  

Z(RR), necessarily equal to J, and © follows. Finally, assume that © holds . If 0 ≠ a ∈ R and Ra =

1(b), b ∈ R, then b is a nonunit (as  

a ≠ 0) so b ∈ Z(RR) by ©. Hence Ra = 1(b) ⊆ess
RR, proving (a). 

Note that the ring R in Example 8 is left morphic and satisfies  

Z(RR) = J but R is not right morphic. This ring also has the property that  

Z(RR) = J = Z(RR) but RR is not uniform. 

Question. 

If R is a semiperfect ,left morphic ring, is J(R) = 0? 

4. Structure theorems 
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If a mild finiteness condition is applied to a left morphic ring, we can obtain some structure results. 

To begin, Therefore 23 leads to the following theorem for semiperfect, left morphic rings. 

Theorem 29. 

A ring R is semiperfect and left morphic if and only if 

R ≅ Mn1(R1) × Mn2(R2) × … .× Mnk(Rk), 

where each Mni(Ri) is left morphic and Ri≅ eiReI for some local idempotent ei∈ R. 

Proof. 

Let E denote a finite set of orthogonal , local idempotents in R whose sum is 1. Given e and f in 

E, define e~f if and only if eRf ≠ 0. This is an equivalence relation on E by Theorem 23, so let 

E1,…Em denote the equivalence classes and write hk= ∑{e ∈ E|e ∈ Ek} for each k. Then  

hkRhk≅ Mnk(eRe) for any e ∈ Ek using Theorem 23, and hkRhk  

(and eRe) is left morphic by Theorem 15. Hence it remains to prove that each hk is central. But if 

h ≠ l then hkRhl⊆ ∑{eRf|e ∈ Ek,f ∈ El}=0 because e ≁ f. Hence, if r ∈ R, hkr =

hkr(h1+….+hm) = hkrhk. Similarly , rhk= hkrhk and it follows that hk is central. 

We hasten to note that Mn(R) need not be left morphic even if R is left special as Example 16 

shows. However we do get a better theorem in the semiprimary case. 

Corollary 30. 

The following are equivalent for a ring R: 

(1) R is a semiprimary ring that is left and right morphic. 

(2) R ≅ Mn1(R1) × Mn2(R2) × … . .× Mnk(Rk) where each Ri is left and right special. 

Proof. 

(1) ⇒ (2). Assume that (1) holds. If e is a local idempotent in R, then eRe is left and right morphic 

by Theorem 15, and J(eRe) = eJe is nilpotent. Hence eRe is left and right special, and (2) follows 

from Theorem 29. 

(2) ⇒ (1). Given the situation in (2), each Mni(Ri) is left and right morphic by Theorem 17, and 

J(Mni(Ri)) = Mni(J(Ri)) is nilpotent because J(Ri) is nilpotent . Hence (1) follows from Example 

2. 

In fact, the rings in Corollary 30 are all left and right artinian (this is true of left and right special 

rings), and we present several characterizations of these rings below (Theorem 35). This entails an 
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examination of the effect on a left morphic ring of various finiteness conditions. We begin with 

the ascending chain condition on right annihilators. 

Theorem 31. 

Let R be a left morphic ring with ACC on right annihilators.Then: 

(1) eRe is left special for every local idempotent e ∈ R. 

(2)R is left artinian. 

(3) R is right and left Kasch. 

(4) soc(RR) = soc(RR). 

(5) Z(RR) = J = Z(RR). 

Proof. 

We have J = Z(RR) because R is right P-injective (Theorem 24), so J is nilpotent by the ACC on 

right annihilators (this is the Mewborn-Winton theorem [10]). Hence (1) follows from Theorems 

15 and 9. Moreover, R satisfies the DCC on left annihilators, and so has the DCC on principal left 

ideals because it is left morphic. This means that R is right perfect by Bass’ theorem [1] (see [8, 

Theorem 23.20]). Now (2) follows from (1) and Theorem 29. Finally, R is a semiperfect, right P-

injective ring in which soc(RR) ⊆essRR (because J is nilpotent), and so R is a right GPF ring as 

defined in [11, p.83]. Hence (3)follows by [11, Corollary 2.3], (4) by [11,Theorem 2.3] and (5) by 

[11, Corollary 2.2]. 

Note that every left special ring is left duo and satisfies the ACC on right annihilators (it is left 

artinian). Hence Theorem 9 gives: 

 

Corollary 32. 

A left duo, left morphic ring has ACC on right annihilators if and only if it is a finite direct product 

of special left morphic rings. 

The converse to Theorem 31 is not true. In fact if R is the ring in Example 8 then M2(R) enjoys 

properties (1)-(5) in Theorem 31 but it is not left morphic by Example 16. However we do have 

Theorem 35 below, but the proof requires the following lemma. 

Lemma 33. 

The following are equivalent for a semiperfect, left morphic ring R: 

(1) J is nilpotent. 
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(2) J is nil and soc(RR) ⊆essRR. 

(3) R has ACC on principal left ideals and soc(RR) ⊆ RR. 

Proof. 

(1) ⇒ (2) and (3). Given (1), then (2) is clear, and R is left perfect and so has DCC on principal 

right ideals by Bass’ theorem [1] (see [8, Theorem 28.20]). Hence R has ACC on principal left 

ideals by Jonah’s theorem [7]. 

(2) or (3) ⇒ (1). Let 1 = e1+ ⋯ + en be orthogonal local idempotents in R. Then J = Je1+ ⋯ +

Jen, so it suffices to show that each Jei  is  a nilpotent left ideal. But (Jei)k+1= J(eiJei)k for each k ≥

0, so it suffices to show eiJei= J(eiRei) is nilpotent.Now observe that each eiRei  is local and left 

morphic, and that either J(eiRei) = eiJei  is nil or eiRei  inherits the ACC on principal left ideals (by 

a routine argument). Moreover,eiRei  has essential right socle by Theorem 29 because this property 

passes to direct factors and is a Morita invariant [12, Lemma 3.17]. Hence we may (and do) assume 

that R is local. 

Since soc(RR) ⊆ soc(RR) by Theorem 24, we have soc(RR) ≠ 0 by hypothesis . So let Rk be a 

simple left ideal of R , and choose c ∈ R such that Rk = 1(c) and Rc = 1(k). Then R/Rc=
R

1(k)
≅

Rk, so Rc is a maximal right ideal of R. Hence Rc = J because R is local. Then the proof of © in 

Theorem 9 goes through to show that Jk= Rck for all  

k ≥ 0, so we are done if J is nil. On the other hand , assume that R has the ACC on principal left 

ideals. Then the chain 1(c) ⊆ 1(c2) ⊆ 1(c3) ⊆ 

Terminates (it consists of principal left ideals because R is left morphic) , say 1(cm) = 1(cm+1)  

where m ≥ 1. Choose x, y ∈ R such that  

Rx = 1(cm),1(x) = Rcm= Jm, and Ry = 1(cm+1), 1(y) = Rcm+1= Jm+1. 

Then Rx = Ry, say x = uy and y = vx. Hence x = uvx, so uv ∉ J because x ≠ 0. It follows that 

uv is a unit (as R is local) and so u is a unit (by proposition 6). But 0 = cmx = cmuy, so cmu ∈

1(y) = Rcm+1= Jm+1. Thus cm∈ Jm+1= Rcm+1, say cm= rcm+1. Hence (1 − rc)cm= 0 so  

cm= 0 because c ∈ J. This means Jm= Rcm= 0, as required. 

Note that the proof of (2) or (3) ⇒ (1) in Lemma 33 requires only that  

soc(RR) ⊆essRR. What is needed is that the condition soc(RR) ≠ 0 passes from R to eRe for each 

local idempotent e ∈ R. 

We can now prove a structure theorem for left perfect, left and right morphic rings. Recall that a 

ring R is called right selfinjective if every R-linear map γ: T → RR , T a right ideal of R, extends 
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to RR→ RR , equivalently if γ = c is left multiplication by some c ∈ R. A left and right selfinjective 

ring R is called quasi-Frobenius if it is left and right artinian. 

Lemma 34. 

Every left and right special ring R is quasi-Frobenius. 

Proof. 

R is left and right artinian by Theorem 9. Since every one-sided ideal is principal, R is right and 

left selfinjective by Theorem 24. 

Theorem 35. 

The following are equivalent for a ring R: 

(1) R is left artinian and left and right morphic. 

(2) R is semiprimary and left and right morphic. 

(3) R is left perfect and left and right morphic. 

(4) R is a semiperfect, left and right morphic ring in which J is nil and  

soc(RR) ⊆essRR . 

(5) R is a semiperfect, left and right morphic ring with ACC on principal left ideals in which 

soc(RR) ⊆essRR. 

(6) R is a finite direct product of matrix rings over right and left special rings.In this case, R is 

quasi-Frobenius. 

Proof. 

(1) ⇒ (2) ⇒ (3) is clear; and (6) ⇒ (1) because such a direct product is left artinian by Theorem 

9, and it is left and right morphic by  

Theorem 17. 

(3) ⇒ (6) and (5) ⇒ (6). By Theorem 29, R ≅ ∏ Mm
i=1 ni(Ri) where each Ri≅ eiRei  for some 

local idempotent ei∈ R. Hence each Ri  is local and left and right morphic by Theorem 15. Moreover 

Ri is left special by Theorem 9 because J(Ri) is nilpotent for each i by Lemma 33.  

This proves (6). 

Finally, R is quasi-Frobenius by (6) and Lemma 34 because being quasi-Frobenius is a Morita 

invariant. 
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The converse to Lemma 34 is false. 

 

Example 36. 

If C2 denotes the group of order 2, the group ring R = ℤ4C2 is a commutative, local quasi-Frobenius 

ring which is not morphic. 

Proof. 

First, R is selfinjective by Connell’s theorem [4, Theorem 4.1] so, since it is clearly artinian, R is 

quasi-Frobenius. Writing C2= {1, g}, we have ideals A = {a + bg|a + b = 0} and B = {a +

bg|a − b = 0} in R, and a routine calculation shows that every element u ∉ A + B satisfies  

u2= 1. Hence R is local and A + B = J. But A ⊈ B and B ⊈ A, so R is not morphic by Theorem 9. 

However the only element of R that is not morphic is x = 2 + 2g, as the reader can verify. 

Observe that if F is a field, the ring R = [
F F
0 F

] is left artinian and eRe ≅ F is left special for each 

local idempotent e, but R is neither left nor right morphic (indeed, neither left nor right P-injective). 

In fact, neither soc (RR) = [
0 F
0 F

]  or soc(RR) = [
F F
0 0

] contains the other. 
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