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Abstract                                                                                                                    

The algebraic operations on lower-order matrices are a simple and easy one. But for higher dimensional 

matrix the operations are trivial to do manually. In this project we intend to do algebraic operations like 

addition, subtraction, multiplication of higher dimensional matrix (maximum of 16×16) by using Intel 8085 

microprocessor assembly language program (ALP). The reason for choosing the above dimensional limit 

is that we have small memory sized RAM. The elements of the matrices are restricted to a positive real 

hexadecimal number since the registers can hold an only positive hexadecimal number. 

 Keywords: intel-8085, matrix algebra, programmer model, hexadecimal.                                                                                                                                                                                                            

INTRODUCTION 

Matrix algebra is very important as it has a wide application in various fields.  An algebraic 

operation like addition, subtraction, multiplication, scalar multiplication and inverse can be done 

on matrices with certain rules and regulations. The dimension of a matrix is represented by (m×n), 

where m and n represent the number of rows and column respectively. Also known as the order of 

a matrix. Where, 

m, n ∈ ℤ + 

The Intel 8085 microprocessor is an 8-bit processor. The programmer model shown in Fig.1 helps 

the programmer to understand the memory organization of internal memories. It consists of two 
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Fig. 1: Programmer model of 8085 

blocks namely, register block and memory block. The register block consists of an accumulator, 

six general purpose register which is 8-bit. Besides they have stack pointer and program counter 

which are 16-bit. The memory block consists of 2K EPROM where the utility programs are stored 

and 2K RAM where the user programs are stored. Each memory in the memory block can hold an 

8-bit value which is addressed by 16-bit numbers. These two blocks are connected by parallel lines 

namely address bus, data bus and control bus.  

  

 

 

 

 

  

 

CONSTRAINTS 

Since the memory addresses are named with hexadecimal numbers and the data hold by memories 

and registers are (8-bit) 2 digit hexadecimal number, we have to formulate the problem with certain 

rules. They are, 

 The elements of the matrix and the indices described in this project are hexadecimal 

numbers. 

 The order of the matrix is given in decimal number. 

 The starting address of RAM (user’s program area) is considered to be 4000H. 

 The maximum order of the matrix is 16×16. 

 The program can be modified to do operations of matrices of dimension within the 

above limit. An example we can do operations on (2×10) matrix and so on. 

MATRIX ADDITION AND SUBTRACTION 

 In general, the element of a matrix is represented by “xµϑ” and the matrix itself represented as 

X = [xµϑ] m×n. 

Where the m×n is the order of the matrix X and μ, ϑ are the indices which represent the μth row 

and ϑth column. 

i.e. X = [xµϑ] m×n and Y= [yµϑ] m×n then X±Y = [xµϑ ± yµϑ] m×n. 
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Doing with ALP: 

 Memory mapping: In order to distribute the matrix elements in the memory of RAM, we can 

consider the last two number of the memory address represent the row and column such that 

“ZZµϑ”. 

For example,  

Memory address Data 

 4151 0AH 

 0AH is the element of the matrix of 5th row and 1st column of the corresponding matrix. Here µ 

and ϑ are indices such that, 

µ, ϑ ∈ 0,1,2,……..9,A,B,C,D,E,F. 

Let us consider an addend/subtrahend matrix X of order (16×16), whose elements are located in 

memory 4100H to 41FFH. There are 256 elements in the matrix. 

00 01 02 0

10 11 12

20 21 22

0

. . . .

. . . . .

. . . . .

. . . . . . . .

. . . . . . . .

. . . . . . .

. . . . . . . .

. . . . . .

F

F FF

x x x x

x x x

x x x

X

x

x x



 
 
 
 
 
 
 
 
 
 
 
  

 

Here how the elements are distributed in memories for this matrix is given in Table.1. 

Memory address  Data 

4100 x00 

4101 x01 

4102 x02 

4103 x03 

. . 

. . 

41µϑ xµϑ 

. . 

41FF xFF 

Table. 1 
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Similarly, let the augend/minuend matrix Y = [yµϑ] 16×16 of the same order and their elements are 

located in memory 4200H to 42FFH. For the sum/difference matrix S, elements are located in 

memory 4300H to 43FFH. Where, 

S = X + Y = [xµϑ + yµϑ] 16×16 (for addition operation). 

    S = Y − X = [yµϑ − xµϑ] 16×16 (for subtraction operation). 

 If the result of operation exceeds the value FFH in the case of addition or if the result of an 

operation is negative in the case of subtraction then the carry or borrow will be stored in a matrix  

G= [g𝛍𝛝 ]16×16  of same order respectively. The memory location allotted for this is from 4400H to 

44FFH. 

ALGORITHM FOR ADDITION/SUBTRACTION 

Step 1: Load the number ‘n’ in the E register. Where, n = {(μ×10H) −1H}, n should be a hexadecimal 

number. μ is the number of rows of the matrix. 

Step 2: Load the address of the 1st element of the addend/subtrahend matrix in 

the  BC register pair (data pointer) pair. 

Step 3: Copy the element specified by data pointer to the accumulator and then to H register. 

Step 4: Move the data pointer to the first element of the augend/minuend matrix. 

Step 5: Copy the element to accumulator and proceed with the addition/subtraction operation with 

the H register. 

Step 6: Check if there is a carry/borrow. If there is no carry/borrow jump to Step 10. 

Step 7: If carry/borrow  produced, then store the result of the addition/subtraction by incrementing 

the data pointer to the sum/difference matrix S. 

Step 8: Now clear the accumulator and increment it by one. 

Step 9: Again increment the data pointer to the carry/borrow matrix G and store the corresponding 

Carry/borrow and return to sum/difference matrix S. and then jump to Step 11. 

Step 10: Increment the data pointer to the sum/difference matrix S and store the result. 

Step 11: Decrement the data pointer to the addend/subtrahend matrix X. 

Step 12: Now increment the data pointer to the next element of the same matrix. 

Step 13: Now decrement the value of ‘n’ in the E register. 

Step 14: Check if n is zero or non-zero. If it is a non-zero go to step 3 or else continue to next 

step. 

Step 15: Once again repeat from Step 3 to Step 11. 
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False 

True 

Step 16: End the program. 

Flow chart: 

 

 

 

 

 

  

 

  

 

 

 

 

 

 

                          

                        

                                                                                

 

 
 
 
 

Start 

Load counter with 

n = {(μ×10H) −1} 

 

n = {(μ×16) 

−1}, 
Load the values of 

Addend/Subtrahend & 
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operation 

Check if 

there is no 
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2 

Store the result Store the result and 
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Go to the next element Return 
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False 

True 

 
 
 
 
 
  

                                                                                  

 
 
                      
 

 

CODE FOR 

ADDITION/SUBTRACTION 

      MVI E,FFH    

      LXI B,4100H  

J3: LDAX B      

      MOV H,A    

      INR B       

      LDAX B   

      ADD H / SUB H     

      JNC J1      

      INR B       

      STAX B    

      INR B       

      XRA A     

      INR A       

      STAX B    

      DCR B     

      JMP J2     

 J1: INR B       

       STAX B   

 J2: DCR B      

       DCR B      

       INX B       

       DCR E      

       JNZ J3      

       LDAX B   

       MOV H,A   

       INR B       

1 

Check for 

zero at E 

register 

Repeat only once 

End  

2 
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      LDAX B   

      ADD H  / SUB H    

      JNC J4      

      INR B      

      STAX B   

      INR B       

      XRA A     

      INR A       

      STAX B    

      DCR B      

      JMP J5      

J4: INR B       

      STAX B   

J5: DCR B      

      DCR B      

      HLT         

 

What if a matrix is other than (16×16)? 

Whatever the type of matrix, the way of distributing the elements are the same as in matrix X. The 

only thing matters are the number of rows. The number of rows of the required matrix should be 

taken as µ (maximum 10H) in the formula given in step 1 of the algorithm. 

The program is verified using 8085 simulator v 1.0 (designed by J-Tech Software). 

INPUT FOR ADDITION 

For simplicity, Matrix X can be considered to have all the elements as 01H. The simulation input 

of matrix X is shown in Fig. 2. And the matrix Y is considered to have 02H as its elements except 

for the diagonal elements. The diagonal elements are loaded with FFH to check whether we get a 

diagonal carry matrix.  The simulation input of matrix Y is shown in Fig. 3. 

 

Fig. 2: Matrix X 
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The black colour square bracket is marked in the figure to indicate the matrix bracket. It was not 

present in the simulator. 

 

Fig. 3: Matrix Y 

OUTPUT FOR ADDITION 

 The sum matrix S and the carry matrix G which we obtained are shown in Fig.4 and Fig.5 

respectively. As we expect, the numbers on non-diagonal elements are 03H. Since, 01H + 02H = 

03H. And we obtained the carries at the diagonal as we expected. Since we have entered FFH in the 

diagonals of augend matrix Y. Therefore 01H + FFH = 0100H. (01H at carry matrix and 00H at sum 

matrix). 

 

Fig. 4: Sum Matrix S 
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Fig. 4: Carry matrix G 

INPUT FOR SUBTRACTION  

Matrix X can be considered to have all the non-diagonal elements as 01H and the diagonal elements 

as 02H. The simulation input of matrix X is shown in Fig. 6. And the matrix Y is considered to 

have 02H as its non-diagonal elements and the diagonal elements are loaded with 01H to check 

whether we get a diagonal (negative) borrow matrix. But the difference should be still 01H. The 

simulation input of matrix Y is shown in Fig. 7. 

 

 

Fig. 5: Matrix X 
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Fig. 6: Matrix Y 

 

OUTPUT FOR SUBTRACTION 

The difference matrix S and borrow matrix G which we obtain are shown in Fig. 8 and Fig. 9 

respectively. 

As we expect, all the elements of difference matrix S are 01H. Since, the difference (02H ~ 01H) is 

01H. We obtained the borrow matrix G with diagonal elements 01H, which indicates that the 

diagonal elements in difference matrix S are negative. 

 

Fig. 7: Difference Matrix S 

 

 

Fig. 8: Borrow Matrix  
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MATRIX MULTIPLICATION 

Let X = [xµϑ] m×n be the matrix of order (m×n) and Y = [yµϑ] n×p be the matrix of order (n×p) then 

the product matrix XY will be the order of (m×p). The actual procedure to do matrix multiplication 

is row-by-column multiplication rule. In 8085 system the data pointer moves linearly. Therefore, 

we require a very large number of instructions to do multiplication. So we design the code to follow 

the row-by-row multiplication instead of doing actual procedure. We can get the correct result by 

entering YT instead of the Y matrix which is easy for the user to enter the data. 

Doing with ALP: 

Memory Mapping: The mapping procedure is similar to the previous case except for multiplicand 

matrix Y. In this case, we restrict our self that elements of the matrices are 4-bit hexadecimal 

numbers. So that the resultant element is within 16-bit.  

Let us consider a multiplier matrix X = [xµϑ] 16×16 whose 4-bit elements are located in memory 

4100H to 41FFH and multiplicand transpose matrix YT = [yµϑ]
T 16×16  = [yϑµ]16×16 whose  4-bit 

elements are located in memory 4200H to 42FFH.  

00 10 20 0

01 11 21

02 12 22

0

. . . .

. . . . .

. . . . .

. . . . . . . .

. . . . . . . .

. . . . . . .

. . . . . . . .

. . . . . .

F

T

F FF

y y y y

y y y

y y y

Y

y

y y



 
 
 
 
 
 
 
 
 
 
 
  

 

And the distribution of elements of YT is given in Table. 2. 

Memory address Data 

4200 y00 

4201 y10 

4202 y20 

. . 

. . 

. . 

42µϑ yϑµ 

. . 

. . 

42FF yFF 

Table. 2 
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For the product matrix XY, elements are defined as, 

00 01 02 0

10 11 12

20 21 22

0

. . . .

. . . . .

. . . . .

. . . . . . . .

. . . . . . . .

. . . . . . .

. . . . . . . .

. . . . . .

F

F FF

p p p p

p p p

p p p

XY

p

p p



 
 
 
 
 
 
 
 
 
 
 
  

 

Here, the resultant elements are obtained in memory locations described in the Table. 3. 

 

 

If the product element exceeds FFH then the overlapping number is obtained in the next memory 

of the corresponding element. 

Programmer defined extra-memories 

     Apart from the memory location for program code and input/output data, there should be a 6 

extra-memory location where the description of the matrix should be entered by the user as given 

in the Table. 4. 

 

Memory 

address 

Data Memory 

address 

Data Memory 

address 

Data … 

4300 p00 4400 p10 4500 p20 … 

4310 p01 4410 p11 4510 p21 … 

4320 p02 4420 p12 4520 p22 … 

4330 p03 4430 p13 4530 p23 … 

. . . . . . … 

. . . . . . … 

. . . . . . … 

43ϑ0 p0ϑ 44ϑ0 p1ϑ 45ϑ0 p2ϑ … 

. . . . . . … 

. . . . . . … 

. . . . . . … 

43F0 p0F 44F0 p1F 45F0 p2F … 
Table. 3 
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Memory address Description  Value  

5200 Storage counter (constant) 02H 

5201 No. of columns of matrix X  10H 

5202 No. of columns of product matrix minus one 𝛃H = αH−1 

5203 No. of columns of the product matrix  αH 

5300 Temporary storage (for the program itself)  Forbidden for 

user 

5301 Temporary address storage (for the program 

itself) 

Forbidden for 

user 

Table. 4 

 

ALGORITHM FOR MULTIPLICATION 

Main program 

Step 1: Load DE register pair with 40F0H (starting address−10H) of X.  

Step 2: HL pair with 0010H and then double add the DE and HL register pair. 

Step 3: Exchange the DE (data pointer-1) and HL register pairs. 

Step 4: Store the value of E register in the temporary address storage location. 

Step 5: Load BC (data pointer-2) and go to the subroutine program. 

Step 6: Recover the value of E register from temporary address storage and go to subroutine 

program. 

Step 7: Load the value from address 5202 and decrement it by one. Store it in address 5202. Check 

the value (βH−1), if it is non-zero then go to step-6 or else continue to next step. 

Step 8: Load the actual value of βH in the memory address 5202. 

Step 9: Increment the storage counter. 

Step 10: Recover the value of E register from temporary address storage. 

Step 11: Load the value from address 5203 and decrement it by one. Store it in address 5203. 

Check the value (αH −1), if it is non-zero then go to step-2 or else continue to next step. 

ISSN 2688-8300 (Print) ISSN 2644-3368 (Online) 

JMSCM, Vol.2, No.3, April, 2021 

348 Journal of Mathematical Sciences & Computational Mathematics



Step 12: Now load E register with ‘δH’.  

Where δH = {(10H×ωH) − (10H− ωH)} and ωH is the number of rows of product matrix in 

hexadecimal. 

Step 13: Load the HL pair with the 16-bit address which is obtained by adding 10H with the address 

of the last element of the product matrix. 

Step 14: Clear A and B register and load c register with 10H. 

Step 15: Decrement the HL pair and add memory with A register. 

Step 16: If there is a carry, store the carry in the B register. And decrement C register. 

Step 17: If the value in C is non-zero go to step-15. Else continue to next step. 

Step 18: Store the sum in memory. Increment the HL pair and store the carry in memory and then 

decrement HL pair. 

Step 19: Decrement the E register. If the value in E is non-zero go to step-14. Else continue to next 

step. 

Step 20: Repeat from step-14 to step-18 once.  

Step 21: End the program. 

Subroutine program 

Step 1: Load the content of the DE register pair. 

Step 2: check if the value is zero. If it is zero, then jump to step-11. Else continue to the next step. 

Step 3: Move the value to the L register. 

Step 4: Load the content of the BC register pair. 

Step 5: Move the value to H register. 

Step 6: Multiply the content of H and L register by multiple additions. 

Step 7: Store the result in temporary storage. 

Step 8: load the storage counter value from address 5200 to A and decrement it. Increment the B 

register by the value in A register. 

Step 9: Recover the result from temporary storage and store the result in the area denoted by BC. 

Step 10: Decrement the BC to previous value by using storage counter. 
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Step 11: Increment the BC and DE by one. 

Step 12: Load the value of columns in A from address 5201 and decrement it by one. 

Step 13: Check for non-zero. If it is non-zero then go to step-1 or else continue to next step. 

Step 14: Store the actual number of columns in address 5201. 

Step 15: Return to the main program. 

FLOW CHART 

Main program: 

 
 

 
 
 
 
 
 
 
 
 
 

 

 

 

 

Start 

Load DE with starting 

address of matrix X -10H   

Add DE pair with 10H and store 

E in Temporary address 

storage 

Load BC with starting 

address of Y matrix 

 

RETURN1 

Recover value of E 

register 

SR2 

A 

B 

SR1 
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True 

True 

True 

True 

False 

False 

False 

 False 

 
 
 
 
                                                                    

                                                                    
  
                    

                       

 
  
                                                                   

 
 
                                                                   

                                 
                               
                                                                                                                                                

                                                                                                                                                                                                                                                                                                                                                                                                
                                                                                                                                                                

 
                                                          

 
 

Load 𝛃H and decrement 

by one. And store as 𝛃H 

Check if 

𝛃H ≠0 
A 

Store actual value of 𝛃H on 

its location and increment 

the storage counter by one 

 

Decrement the value of 

αH 

Check if 

αH ≠0 

Load E register with 

δH  

Load the HL with 

address of last element + 

10H 

Load A&B with 0 and C 

with 10H 

Decrement HL pair and 

add A with memory 

If there is carry then 

increment B register. And 

decrement C register 

Check 

for C≠0 

Store the Sum and carry 

Decrement the E 

register 

Check 

for E ≠0 

Repeat addition 

procedure once 

C 

C 

RETURN2 

B 
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True 

False 

Subroutine program:  

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                        

                                                                 

                                                                    

 

 

 

 

  

 

 

 

SR 

Load the content of DE and 

BE register pair and multiply 

and store it in temporary 

memory storage 

Move the data pointer-2 to the 

corresponding product 

element. 

Recover data from temporary 

storage and store it. Move back 

the data pointer-2. 

Increment the DE and BC 

register pair and decrement the 

value in address 5201 

Store back 10H in the address 

5201 

Check if 

value ≠0 

RETURN 
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CODING FOR MULTIPLICATION. 

Main program 

       LXI D,40F0H   

J2:  LXI H,0010H   

       DAD D        

       XCHG        

       MOV A,E   

       STA 5301H  

       LXI B,4200H  

       CALL S1     

J1:  LDA 5301H   

       MOV E,A     

       CALL S1      

       LDA 5202H   

       DCR A        

       STA 5202H   

       JNZ J1       

       MVI A,02H    

       STA 5202H     

       LDA 5200H    

       INR A      

       STA 5200H     

       LDA 5301H    

       MOV E,A      

       LDA 5203H    

       DCR A        

       STA 5203H   

       JNZ J2       

       MVI E,23    

       LXI H,4530H  

J5:  XRA A        

       MOV B,A     

       MVI C,10H    

J4:  DCX H        

       ADD M        

       JNC J3       

       INR B      

J3:  DCR C       

       JNZ J4       

       MOV M,A   

       INX H        

       MOV M,B     

       DCX H        

       DCR E        

       JNZ J5       

       XRA A      

       MOV B,A    

       MVI C,10H    

J7:  DCX H        
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       ADD M        

       JNC J6     

       INR B      

J6:  DCR C     

       JNZ J7     

       MOV M,A   

       INX H        

       MOV M,B    

       DCX H        

       HLT          

Subroutine program  

S1:  LDAX D    

       INR A       

       DCR A      

       JZ L1        

       MOV L,A   

       LDAX B      

       MOV H,A     

       XRA A        

L2:  ADD H       

       DCR L        

       JNZ L2      

       STA 5300H   

       LDA 5200H    

L4:  DCR A        

       JZ L3        

       INR B       

       JMP L4     

L3:  LDA 5300H   

       STAX B       

       LDA 5200H    

L5:  DCR A        

       JZ L1        

       DCR B       

       JMP L5       

L1:  INX B        

       INX D        

       LDA 5201H     

       DCR A        

       STA 5201H    

       JNZ S1       

       MVI A,10H    

       STA 5201H    

       RET          

INPUT 

          For simplicity we can consider multiplier matrix X of order (3×16) and multiplicand matrix 

Y of order (16×3) with all the element as 01H, In order to get a product matrix XY of order (3×3). 
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The program code given above written for this dimension by using conditions mentioned in Table. 

4 and main algorithm step 12&13. Therefore the values of the parameters are: 

αH = 03H 

𝛃H = 02H 

ωH = 03H 

δH = 23H  

But still, the program is capable of performing multiplication of maximum limit of (16×16) by 

changing the limits in Table 4 and the main algorithm step 12&13. 

The reason we have chosen this kind of input matrix X and Y is to get the output as sooner as 

possible. If we compute the multiplication operation for maximum dimensional limit, the simulator 

will take a larger amount of time.  

The simulation input of Matrix X is given in Fig. 10. 

 

Fig. 9: Matrix X 

The simulation input of Matrix YT is given in Fig. 11. 

 

Fig. 10: Matrix YT 

OUTPUT 

The simulation output we obtained is shown in Fig.12, Fig.13, and Fig.14. Each Figure represents 

the corresponding row of the product matrix.  
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Fig. 11 

 

Fig. 12 

 

Fig. 13 

Now we can use the Table. 3 to figure out the elements from the resultant values of the memories. 

The black-coloured box is marked to indicate the required memory area for the product matrix. It 

was not present in the simulator. The second (white) column inside the box indicates the 

overlapping value. It will be the first two digits of the corresponding element of the product matrix.  

By using the Table. 3 we can figure out the product matrix as 

0010 0010 0010

0010 0010 0010

0010 0010 0010

H H H

H H H

H H H

XY

 
 


 
  

 

Therefore we successfully got the correct result. 

ADVANTAGE OF THIS HARDWARE COMPUTING 

 It is easy to add on the memory size, therefore we can do computations on n-dimensional 

matrices. 
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 The size of the number we computing here is 8-bit, but it is physically easy to increase the 

size of the data bus. 

 We can include decimal points and negative sign by designing a special flip-flop in each 

register and with few changes in ALU. 

 Parallel computing can be done easily with fewer interfaces.  

CONCLUSION 

 The Assembly language program for computing addition, subtraction and multiplication on higher 

dimensional matrix has been successfully designed. The possible operational limit of this 

algorithm is from (2×2) to (16×16) matrices.  The time taken to complete execution is very long 

in actual 8085 microprocessor since we have small clock frequency oscillator. If we apply the 

same algorithm to the latest hardware systems we may get the result quickly. 
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