

ALGEBRAIC OPERATIONS ON HIGHER-DIMENSIONAL MATRICES

USING ASSEMBLY LANGUAGE PROGRAM IN INTEL 8085

MICROPROCESSOR

1Mohammed Ibrahim .A & 2Malarvizhi .V

1Master Student

Department of Physics

Pachaiyappa’s College, Shenoy Nagar, Chennai-600030. India

Email: mi551212550@hotmail.com

2Associate Professor

Department of Physics

Pachaiyappa’s College, Shenoy Nagar, Chennai-600030. India

Email: malarveliah@gmail.com

Abstract

The algebraic operations on lower-order matrices are a simple and easy one. But for higher dimensional

matrix the operations are trivial to do manually. In this project we intend to do algebraic operations like

addition, subtraction, multiplication of higher dimensional matrix (maximum of 16×16) by using Intel 8085

microprocessor assembly language program (ALP). The reason for choosing the above dimensional limit

is that we have small memory sized RAM. The elements of the matrices are restricted to a positive real

hexadecimal number since the registers can hold an only positive hexadecimal number.

 Keywords: intel-8085, matrix algebra, programmer model, hexadecimal.

INTRODUCTION

Matrix algebra is very important as it has a wide application in various fields. An algebraic

operation like addition, subtraction, multiplication, scalar multiplication and inverse can be done

on matrices with certain rules and regulations. The dimension of a matrix is represented by (m×n),

where m and n represent the number of rows and column respectively. Also known as the order of

a matrix. Where,

m, n ∈ ℤ +

The Intel 8085 microprocessor is an 8-bit processor. The programmer model shown in Fig.1 helps

the programmer to understand the memory organization of internal memories. It consists of two

ISSN 2688-8300 (Print) ISSN 2644-3368 (Online)

JMSCM, Vol.2, No.3, April, 2021

336 Journal of Mathematical Sciences & Computational Mathematics

Fig. 1: Programmer model of 8085

blocks namely, register block and memory block. The register block consists of an accumulator,

six general purpose register which is 8-bit. Besides they have stack pointer and program counter

which are 16-bit. The memory block consists of 2K EPROM where the utility programs are stored

and 2K RAM where the user programs are stored. Each memory in the memory block can hold an

8-bit value which is addressed by 16-bit numbers. These two blocks are connected by parallel lines

namely address bus, data bus and control bus.

CONSTRAINTS

Since the memory addresses are named with hexadecimal numbers and the data hold by memories

and registers are (8-bit) 2 digit hexadecimal number, we have to formulate the problem with certain

rules. They are,

 The elements of the matrix and the indices described in this project are hexadecimal

numbers.

 The order of the matrix is given in decimal number.

 The starting address of RAM (user’s program area) is considered to be 4000H.

 The maximum order of the matrix is 16×16.

 The program can be modified to do operations of matrices of dimension within the

above limit. An example we can do operations on (2×10) matrix and so on.

MATRIX ADDITION AND SUBTRACTION

 In general, the element of a matrix is represented by “xµϑ” and the matrix itself represented as

X = [xµϑ] m×n.

Where the m×n is the order of the matrix X and μ, ϑ are the indices which represent the μth row

and ϑth column.

i.e. X = [xµϑ] m×n and Y= [yµϑ] m×n then X±Y = [xµϑ ± yµϑ] m×n.

ISSN 2688-8300 (Print) ISSN 2644-3368 (Online)

JMSCM, Vol.2, No.3, April, 2021

337 Journal of Mathematical Sciences & Computational Mathematics

Doing with ALP:

 Memory mapping: In order to distribute the matrix elements in the memory of RAM, we can

consider the last two number of the memory address represent the row and column such that

“ZZµϑ”.

For example,

Memory address Data

 4151 0AH

 0AH is the element of the matrix of 5th row and 1st column of the corresponding matrix. Here µ

and ϑ are indices such that,

µ, ϑ ∈ 0,1,2,……..9,A,B,C,D,E,F.

Let us consider an addend/subtrahend matrix X of order (16×16), whose elements are located in

memory 4100H to 41FFH. There are 256 elements in the matrix.

00 01 02 0

10 11 12

20 21 22

0

. . . .

.

.

.

.

.

.

.

F

F FF

x x x x

x x x

x x x

X

x

x x

Here how the elements are distributed in memories for this matrix is given in Table.1.

Memory address Data

4100 x00

4101 x01

4102 x02

4103 x03

. .

. .

41µϑ xµϑ

. .

41FF xFF

Table. 1

ISSN 2688-8300 (Print) ISSN 2644-3368 (Online)

JMSCM, Vol.2, No.3, April, 2021

338 Journal of Mathematical Sciences & Computational Mathematics

Similarly, let the augend/minuend matrix Y = [yµϑ] 16×16 of the same order and their elements are

located in memory 4200H to 42FFH. For the sum/difference matrix S, elements are located in

memory 4300H to 43FFH. Where,

S = X + Y = [xµϑ + yµϑ] 16×16 (for addition operation).

 S = Y − X = [yµϑ − xµϑ] 16×16 (for subtraction operation).

 If the result of operation exceeds the value FFH in the case of addition or if the result of an

operation is negative in the case of subtraction then the carry or borrow will be stored in a matrix

G= [g𝛍𝛝]16×16 of same order respectively. The memory location allotted for this is from 4400H to

44FFH.

ALGORITHM FOR ADDITION/SUBTRACTION

Step 1: Load the number ‘n’ in the E register. Where, n = {(μ×10H) −1H}, n should be a hexadecimal

number. μ is the number of rows of the matrix.

Step 2: Load the address of the 1st element of the addend/subtrahend matrix in

the BC register pair (data pointer) pair.

Step 3: Copy the element specified by data pointer to the accumulator and then to H register.

Step 4: Move the data pointer to the first element of the augend/minuend matrix.

Step 5: Copy the element to accumulator and proceed with the addition/subtraction operation with

the H register.

Step 6: Check if there is a carry/borrow. If there is no carry/borrow jump to Step 10.

Step 7: If carry/borrow produced, then store the result of the addition/subtraction by incrementing

the data pointer to the sum/difference matrix S.

Step 8: Now clear the accumulator and increment it by one.

Step 9: Again increment the data pointer to the carry/borrow matrix G and store the corresponding

Carry/borrow and return to sum/difference matrix S. and then jump to Step 11.

Step 10: Increment the data pointer to the sum/difference matrix S and store the result.

Step 11: Decrement the data pointer to the addend/subtrahend matrix X.

Step 12: Now increment the data pointer to the next element of the same matrix.

Step 13: Now decrement the value of ‘n’ in the E register.

Step 14: Check if n is zero or non-zero. If it is a non-zero go to step 3 or else continue to next

step.

Step 15: Once again repeat from Step 3 to Step 11.

ISSN 2688-8300 (Print) ISSN 2644-3368 (Online)

JMSCM, Vol.2, No.3, April, 2021

339 Journal of Mathematical Sciences & Computational Mathematics

False

True

Step 16: End the program.

Flow chart:

Start

Load counter with

n = {(μ×10H) −1}

n = {(μ×16)

−1},
Load the values of

Addend/Subtrahend &

Augend/Minuend matrix

Addition/Subtraction

operation

Check if

there is no

carry/borrow

1

2

Store the result Store the result and

carry/borrow

Go to the next element Return

ISSN 2688-8300 (Print) ISSN 2644-3368 (Online)

JMSCM, Vol.2, No.3, April, 2021

340 Journal of Mathematical Sciences & Computational Mathematics

False

True

CODE FOR

ADDITION/SUBTRACTION

 MVI E,FFH

 LXI B,4100H

J3: LDAX B

 MOV H,A

 INR B

 LDAX B

 ADD H / SUB H

 JNC J1

 INR B

 STAX B

 INR B

 XRA A

 INR A

 STAX B

 DCR B

 JMP J2

 J1: INR B

 STAX B

 J2: DCR B

 DCR B

 INX B

 DCR E

 JNZ J3

 LDAX B

 MOV H,A

 INR B

1

Check for

zero at E

register

Repeat only once

End

2

ISSN 2688-8300 (Print) ISSN 2644-3368 (Online)

JMSCM, Vol.2, No.3, April, 2021

341 Journal of Mathematical Sciences & Computational Mathematics

 LDAX B

 ADD H / SUB H

 JNC J4

 INR B

 STAX B

 INR B

 XRA A

 INR A

 STAX B

 DCR B

 JMP J5

J4: INR B

 STAX B

J5: DCR B

 DCR B

 HLT

What if a matrix is other than (16×16)?

Whatever the type of matrix, the way of distributing the elements are the same as in matrix X. The

only thing matters are the number of rows. The number of rows of the required matrix should be

taken as µ (maximum 10H) in the formula given in step 1 of the algorithm.

The program is verified using 8085 simulator v 1.0 (designed by J-Tech Software).

INPUT FOR ADDITION

For simplicity, Matrix X can be considered to have all the elements as 01H. The simulation input

of matrix X is shown in Fig. 2. And the matrix Y is considered to have 02H as its elements except

for the diagonal elements. The diagonal elements are loaded with FFH to check whether we get a

diagonal carry matrix. The simulation input of matrix Y is shown in Fig. 3.

Fig. 2: Matrix X

ISSN 2688-8300 (Print) ISSN 2644-3368 (Online)

JMSCM, Vol.2, No.3, April, 2021

342 Journal of Mathematical Sciences & Computational Mathematics

The black colour square bracket is marked in the figure to indicate the matrix bracket. It was not

present in the simulator.

Fig. 3: Matrix Y

OUTPUT FOR ADDITION

 The sum matrix S and the carry matrix G which we obtained are shown in Fig.4 and Fig.5

respectively. As we expect, the numbers on non-diagonal elements are 03H. Since, 01H + 02H =

03H. And we obtained the carries at the diagonal as we expected. Since we have entered FFH in the

diagonals of augend matrix Y. Therefore 01H + FFH = 0100H. (01H at carry matrix and 00H at sum

matrix).

Fig. 4: Sum Matrix S

ISSN 2688-8300 (Print) ISSN 2644-3368 (Online)

JMSCM, Vol.2, No.3, April, 2021

343 Journal of Mathematical Sciences & Computational Mathematics

Fig. 4: Carry matrix G

INPUT FOR SUBTRACTION

Matrix X can be considered to have all the non-diagonal elements as 01H and the diagonal elements

as 02H. The simulation input of matrix X is shown in Fig. 6. And the matrix Y is considered to

have 02H as its non-diagonal elements and the diagonal elements are loaded with 01H to check

whether we get a diagonal (negative) borrow matrix. But the difference should be still 01H. The

simulation input of matrix Y is shown in Fig. 7.

Fig. 5: Matrix X

ISSN 2688-8300 (Print) ISSN 2644-3368 (Online)

JMSCM, Vol.2, No.3, April, 2021

344 Journal of Mathematical Sciences & Computational Mathematics

Fig. 6: Matrix Y

OUTPUT FOR SUBTRACTION

The difference matrix S and borrow matrix G which we obtain are shown in Fig. 8 and Fig. 9

respectively.

As we expect, all the elements of difference matrix S are 01H. Since, the difference (02H ~ 01H) is

01H. We obtained the borrow matrix G with diagonal elements 01H, which indicates that the

diagonal elements in difference matrix S are negative.

Fig. 7: Difference Matrix S

Fig. 8: Borrow Matrix

ISSN 2688-8300 (Print) ISSN 2644-3368 (Online)

JMSCM, Vol.2, No.3, April, 2021

345 Journal of Mathematical Sciences & Computational Mathematics

MATRIX MULTIPLICATION

Let X = [xµϑ] m×n be the matrix of order (m×n) and Y = [yµϑ] n×p be the matrix of order (n×p) then

the product matrix XY will be the order of (m×p). The actual procedure to do matrix multiplication

is row-by-column multiplication rule. In 8085 system the data pointer moves linearly. Therefore,

we require a very large number of instructions to do multiplication. So we design the code to follow

the row-by-row multiplication instead of doing actual procedure. We can get the correct result by

entering YT instead of the Y matrix which is easy for the user to enter the data.

Doing with ALP:

Memory Mapping: The mapping procedure is similar to the previous case except for multiplicand

matrix Y. In this case, we restrict our self that elements of the matrices are 4-bit hexadecimal

numbers. So that the resultant element is within 16-bit.

Let us consider a multiplier matrix X = [xµϑ] 16×16 whose 4-bit elements are located in memory

4100H to 41FFH and multiplicand transpose matrix YT = [yµϑ]
T 16×16 = [yϑµ]16×16 whose 4-bit

elements are located in memory 4200H to 42FFH.

00 10 20 0

01 11 21

02 12 22

0

. . . .

.

.

.

.

.

.

.

F

T

F FF

y y y y

y y y

y y y

Y

y

y y

And the distribution of elements of YT is given in Table. 2.

Memory address Data

4200 y00

4201 y10

4202 y20

. .

. .

. .

42µϑ yϑµ

. .

. .

42FF yFF

Table. 2

ISSN 2688-8300 (Print) ISSN 2644-3368 (Online)

JMSCM, Vol.2, No.3, April, 2021

346 Journal of Mathematical Sciences & Computational Mathematics

For the product matrix XY, elements are defined as,

00 01 02 0

10 11 12

20 21 22

0

. . . .

.

.

.

.

.

.

.

F

F FF

p p p p

p p p

p p p

XY

p

p p

Here, the resultant elements are obtained in memory locations described in the Table. 3.

If the product element exceeds FFH then the overlapping number is obtained in the next memory

of the corresponding element.

Programmer defined extra-memories

 Apart from the memory location for program code and input/output data, there should be a 6

extra-memory location where the description of the matrix should be entered by the user as given

in the Table. 4.

Memory

address

Data Memory

address

Data Memory

address

Data …

4300 p00 4400 p10 4500 p20 …

4310 p01 4410 p11 4510 p21 …

4320 p02 4420 p12 4520 p22 …

4330 p03 4430 p13 4530 p23 …

. …

. …

. …

43ϑ0 p0ϑ 44ϑ0 p1ϑ 45ϑ0 p2ϑ …

. …

. …

. …

43F0 p0F 44F0 p1F 45F0 p2F …
Table. 3

ISSN 2688-8300 (Print) ISSN 2644-3368 (Online)

JMSCM, Vol.2, No.3, April, 2021

347 Journal of Mathematical Sciences & Computational Mathematics

Memory address Description Value

5200 Storage counter (constant) 02H

5201 No. of columns of matrix X 10H

5202 No. of columns of product matrix minus one 𝛃H = αH−1

5203 No. of columns of the product matrix αH

5300 Temporary storage (for the program itself) Forbidden for

user

5301 Temporary address storage (for the program

itself)

Forbidden for

user

Table. 4

ALGORITHM FOR MULTIPLICATION

Main program

Step 1: Load DE register pair with 40F0H (starting address−10H) of X.

Step 2: HL pair with 0010H and then double add the DE and HL register pair.

Step 3: Exchange the DE (data pointer-1) and HL register pairs.

Step 4: Store the value of E register in the temporary address storage location.

Step 5: Load BC (data pointer-2) and go to the subroutine program.

Step 6: Recover the value of E register from temporary address storage and go to subroutine

program.

Step 7: Load the value from address 5202 and decrement it by one. Store it in address 5202. Check

the value (βH−1), if it is non-zero then go to step-6 or else continue to next step.

Step 8: Load the actual value of βH in the memory address 5202.

Step 9: Increment the storage counter.

Step 10: Recover the value of E register from temporary address storage.

Step 11: Load the value from address 5203 and decrement it by one. Store it in address 5203.

Check the value (αH −1), if it is non-zero then go to step-2 or else continue to next step.

ISSN 2688-8300 (Print) ISSN 2644-3368 (Online)

JMSCM, Vol.2, No.3, April, 2021

348 Journal of Mathematical Sciences & Computational Mathematics

Step 12: Now load E register with ‘δH’.

Where δH = {(10H×ωH) − (10H− ωH)} and ωH is the number of rows of product matrix in

hexadecimal.

Step 13: Load the HL pair with the 16-bit address which is obtained by adding 10H with the address

of the last element of the product matrix.

Step 14: Clear A and B register and load c register with 10H.

Step 15: Decrement the HL pair and add memory with A register.

Step 16: If there is a carry, store the carry in the B register. And decrement C register.

Step 17: If the value in C is non-zero go to step-15. Else continue to next step.

Step 18: Store the sum in memory. Increment the HL pair and store the carry in memory and then

decrement HL pair.

Step 19: Decrement the E register. If the value in E is non-zero go to step-14. Else continue to next

step.

Step 20: Repeat from step-14 to step-18 once.

Step 21: End the program.

Subroutine program

Step 1: Load the content of the DE register pair.

Step 2: check if the value is zero. If it is zero, then jump to step-11. Else continue to the next step.

Step 3: Move the value to the L register.

Step 4: Load the content of the BC register pair.

Step 5: Move the value to H register.

Step 6: Multiply the content of H and L register by multiple additions.

Step 7: Store the result in temporary storage.

Step 8: load the storage counter value from address 5200 to A and decrement it. Increment the B

register by the value in A register.

Step 9: Recover the result from temporary storage and store the result in the area denoted by BC.

Step 10: Decrement the BC to previous value by using storage counter.

ISSN 2688-8300 (Print) ISSN 2644-3368 (Online)

JMSCM, Vol.2, No.3, April, 2021

349 Journal of Mathematical Sciences & Computational Mathematics

Step 11: Increment the BC and DE by one.

Step 12: Load the value of columns in A from address 5201 and decrement it by one.

Step 13: Check for non-zero. If it is non-zero then go to step-1 or else continue to next step.

Step 14: Store the actual number of columns in address 5201.

Step 15: Return to the main program.

FLOW CHART

Main program:

Start

Load DE with starting

address of matrix X -10H

Add DE pair with 10H and store

E in Temporary address

storage

Load BC with starting

address of Y matrix

RETURN1

Recover value of E

register

SR2

A

B

SR1

ISSN 2688-8300 (Print) ISSN 2644-3368 (Online)

JMSCM, Vol.2, No.3, April, 2021

350 Journal of Mathematical Sciences & Computational Mathematics

True

True

True

True

False

False

False

 False

Load 𝛃H and decrement

by one. And store as 𝛃H

Check if

𝛃H ≠0
A

Store actual value of 𝛃H on

its location and increment

the storage counter by one

Decrement the value of

αH

Check if

αH ≠0

Load E register with

δH

Load the HL with

address of last element +

10H

Load A&B with 0 and C

with 10H

Decrement HL pair and

add A with memory

If there is carry then

increment B register. And

decrement C register

Check

for C≠0

Store the Sum and carry

Decrement the E

register

Check

for E ≠0

Repeat addition

procedure once

C

C

RETURN2

B

ISSN 2688-8300 (Print) ISSN 2644-3368 (Online)

JMSCM, Vol.2, No.3, April, 2021

351 Journal of Mathematical Sciences & Computational Mathematics

True

False

Subroutine program:

SR

Load the content of DE and

BE register pair and multiply

and store it in temporary

memory storage

Move the data pointer-2 to the

corresponding product

element.

Recover data from temporary

storage and store it. Move back

the data pointer-2.

Increment the DE and BC

register pair and decrement the

value in address 5201

Store back 10H in the address

5201

Check if

value ≠0

RETURN

ISSN 2688-8300 (Print) ISSN 2644-3368 (Online)

JMSCM, Vol.2, No.3, April, 2021

352 Journal of Mathematical Sciences & Computational Mathematics

CODING FOR MULTIPLICATION.

Main program

 LXI D,40F0H

J2: LXI H,0010H

 DAD D

 XCHG

 MOV A,E

 STA 5301H

 LXI B,4200H

 CALL S1

J1: LDA 5301H

 MOV E,A

 CALL S1

 LDA 5202H

 DCR A

 STA 5202H

 JNZ J1

 MVI A,02H

 STA 5202H

 LDA 5200H

 INR A

 STA 5200H

 LDA 5301H

 MOV E,A

 LDA 5203H

 DCR A

 STA 5203H

 JNZ J2

 MVI E,23

 LXI H,4530H

J5: XRA A

 MOV B,A

 MVI C,10H

J4: DCX H

 ADD M

 JNC J3

 INR B

J3: DCR C

 JNZ J4

 MOV M,A

 INX H

 MOV M,B

 DCX H

 DCR E

 JNZ J5

 XRA A

 MOV B,A

 MVI C,10H

J7: DCX H

ISSN 2688-8300 (Print) ISSN 2644-3368 (Online)

JMSCM, Vol.2, No.3, April, 2021

353 Journal of Mathematical Sciences & Computational Mathematics

 ADD M

 JNC J6

 INR B

J6: DCR C

 JNZ J7

 MOV M,A

 INX H

 MOV M,B

 DCX H

 HLT

Subroutine program

S1: LDAX D

 INR A

 DCR A

 JZ L1

 MOV L,A

 LDAX B

 MOV H,A

 XRA A

L2: ADD H

 DCR L

 JNZ L2

 STA 5300H

 LDA 5200H

L4: DCR A

 JZ L3

 INR B

 JMP L4

L3: LDA 5300H

 STAX B

 LDA 5200H

L5: DCR A

 JZ L1

 DCR B

 JMP L5

L1: INX B

 INX D

 LDA 5201H

 DCR A

 STA 5201H

 JNZ S1

 MVI A,10H

 STA 5201H

 RET

INPUT

 For simplicity we can consider multiplier matrix X of order (3×16) and multiplicand matrix

Y of order (16×3) with all the element as 01H, In order to get a product matrix XY of order (3×3).

ISSN 2688-8300 (Print) ISSN 2644-3368 (Online)

JMSCM, Vol.2, No.3, April, 2021

354 Journal of Mathematical Sciences & Computational Mathematics

The program code given above written for this dimension by using conditions mentioned in Table.

4 and main algorithm step 12&13. Therefore the values of the parameters are:

αH = 03H

𝛃H = 02H

ωH = 03H

δH = 23H

But still, the program is capable of performing multiplication of maximum limit of (16×16) by

changing the limits in Table 4 and the main algorithm step 12&13.

The reason we have chosen this kind of input matrix X and Y is to get the output as sooner as

possible. If we compute the multiplication operation for maximum dimensional limit, the simulator

will take a larger amount of time.

The simulation input of Matrix X is given in Fig. 10.

Fig. 9: Matrix X

The simulation input of Matrix YT is given in Fig. 11.

Fig. 10: Matrix YT

OUTPUT

The simulation output we obtained is shown in Fig.12, Fig.13, and Fig.14. Each Figure represents

the corresponding row of the product matrix.

ISSN 2688-8300 (Print) ISSN 2644-3368 (Online)

JMSCM, Vol.2, No.3, April, 2021

355 Journal of Mathematical Sciences & Computational Mathematics

Fig. 11

Fig. 12

Fig. 13

Now we can use the Table. 3 to figure out the elements from the resultant values of the memories.

The black-coloured box is marked to indicate the required memory area for the product matrix. It

was not present in the simulator. The second (white) column inside the box indicates the

overlapping value. It will be the first two digits of the corresponding element of the product matrix.

By using the Table. 3 we can figure out the product matrix as

0010 0010 0010

0010 0010 0010

0010 0010 0010

H H H

H H H

H H H

XY

Therefore we successfully got the correct result.

ADVANTAGE OF THIS HARDWARE COMPUTING

 It is easy to add on the memory size, therefore we can do computations on n-dimensional

matrices.

ISSN 2688-8300 (Print) ISSN 2644-3368 (Online)

JMSCM, Vol.2, No.3, April, 2021

356 Journal of Mathematical Sciences & Computational Mathematics

 The size of the number we computing here is 8-bit, but it is physically easy to increase the

size of the data bus.

 We can include decimal points and negative sign by designing a special flip-flop in each

register and with few changes in ALU.

 Parallel computing can be done easily with fewer interfaces.

CONCLUSION

 The Assembly language program for computing addition, subtraction and multiplication on higher

dimensional matrix has been successfully designed. The possible operational limit of this

algorithm is from (2×2) to (16×16) matrices. The time taken to complete execution is very long

in actual 8085 microprocessor since we have small clock frequency oscillator. If we apply the

same algorithm to the latest hardware systems we may get the result quickly.

REFERENCES:

1. V Vijayendran. “Fundamentals of Microprocessor-8085 Architecture Programming & Interfacing”, S.

Viswanathan Printers & Publishers Pvt. Ltd., Chennai, India (2009)

2. 8080/8085 Assembly Language Programming Manual Copyright © 1977, 1978 Intel Corporation,

California, USA

ISSN 2688-8300 (Print) ISSN 2644-3368 (Online)

JMSCM, Vol.2, No.3, April, 2021

357 Journal of Mathematical Sciences & Computational Mathematics

	Final Paper_Page_336-466
	Paper1_final

