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ABSTRACT 

Multivariate Behrens-Fisher Problem is a problem that deals with testing the equality of two means 

from multivariate normal distribution when the covariance matrices are unequal and unknown. 

However, there is no single procedure served as a better performing solution to this problem. In this 

study efforts were made in selecting four different existing procedures and examined their power and 

rate to which they control type I error using different setting and conditions designed in the study. To 

overcome this problem a code was designed via R Statistical Software and simulate random normal 

data which  independently run 1000 times, using MASS package in order to estimate the power and rate 

at which each procedure control type I error rate. In the simulation result we discovered that some of 

these existing procedures have equal and highest power in some certain settings like Yao and Adebayo, 

Johansen and Yao, Krishnamoorthy and Adebayo, Yao and Krishnamoorthy but when P-variables is 

increase we also found that these procedures with equal power varies significantly, where as some 

procedures’ power decrease while some increases in power.  For type I error rate where robustness and 

nominal level matters we found that under some settings none of the procedure maintained nominal 

level and some procedures lie outside the interval and considered non-robust. Yao and Adebayos were 

found good when P=2 and sample size n1> n2, it is discovered that at a sample size (300, 200) all 

procedures attained the nominal level. 

Keywords: Multivariate Behrens-Fisher, Johansen, Yao, Krishnamoorthy and Adebayos’ 

procedures, Power of Test, Error Rate. 

INTRODUCTION 

1.0 Background of the Study 

The well-known multivariate Behrens-Fisher problem is a problem which deals with testing 

the equality of two normal mean vectors under heteroscedasticity of dispersion matrices 

(Junyong Park, 2009). This problem is applicable when testing the equality of two means from 

multivariate normal distribution when the covariance matrices are unequal and unknown. This 

problem is a generalization of the univariate Behrens-Fisher problem; perhaps it inherits all of 

the difficulties that arise in the univariate problem.   
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In 1929 Walter Behrens instigated a problem that have driven the world of statistician into 

different researches, six years later in 1935, Ronald Fisher used a concept of his fiducial 

distribution and able to succeeded in some aspect of this problem, since then the problem was 

generally known as Behrens Fisher Problem. This problem is a problem that deals with testing 

the equality of two population means without assuming equal population variances (Yao 1965 

and Wang 1971). In its univariate concepts there were enormous scholars who lay hands to 

overcome this problem such as Kim and Cohen (1998), Welch (1947) and Satterthwaite (1946) 

among others. Efforts were made by numbers of researchers extending univariate form of this 

problem to multivariate eversion, such as Yao 1965, Krishnamoorthy (2004), Johanson (1980), 

Algina et al. (1991), Adebayo and Oyeyemi (2018), more recently study Gulumbe et al. (2021) 

have designed some complicated settings and conditions under which the robustness of some 

existing procedures under Multivariate Behrens Fisher Problems were investigated. In their 

work they found that Hotelling T2 may compete under some setting when power matters with 

some existing procedures under Multivariate Behrens Fisher Problems.  

It is universally accepted that, Behrens Fisher Problem do not have one procedure or method 

that could provide a general solution to all problems in the area,  each procedure has its own 

good and weak part. One procedure may be good under a particular condition and become weak 

or moderately perform under another condition and this motivates the researchers to designed 

different conditions under which all procedures discuss in the methodology will be tested and 

judge according to their performances 

The aim of this study is to propose new settings and conditions under which the power and rate 

at which each procedure control Type I error will be investigated. It also put into consideration 

both old and newly extended procedures in the field of Multivariate Behrens Fisher Problem. 

However, in the result finding we discovered that under the settings used in the study some 

procedures tend to have equal power where as in some settings the powers varies. We also 

observed that with the increase of P-variables some of these procedures with equal power tend 

to varies, one may increase while the other one decreases. Therefore, we have enough and 

cleared evidence to say P-variable has some effect to power and robustness. Under the settings 

used we also found that, there were some conditions where none of the procedure attained a 

nominal-level but in most of the conditions designed one procedure or the other will exactly be 

at nominal level of , α = 0.01, α = 0.025, α = 0.05, respectively.  

This study is limited to the use of multivariate normal data generated based on two random 

samples using a command mvrnom found in a package MASS in R statistical software. The 

study is also limited to the use of alpha at three different significance level, α = 0.01, α = 0.025, 

α = 0.05, and when p=2 and p=3 respectively. The used of  α = 0.025 and other settings were 

made as suggested by Gulumbe et al. (2021) 

COMPUTATIONAL PROCEDURES 

Consider two 𝜌-variate normal populations N(μ1, ∑1) and N(μ2, ∑2) where μ1andμ2 are unknown 

p x 1 vectors and ∑1and ∑2 are unknown p ×p positive definite matrices.  

Let Xα1~ N(μ1, ∑1), α = 1, 2,…., n1, and Xα2 ~ N(μ2, ∑2), α = 1, 2,…., n2 denote random samples 

from these two populations, respectively. We are interested in the testing problem.  
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  Ho: μ1 = μ2   against   H1 :μ1≠μ2                 (1) 

  For i = 1, 2 Let  

�̅�𝑖 =  
1

𝑛𝑖
∑ X∝𝑖,

𝑛𝑖
∝=1                                (2) 

𝐴𝑖 = ∑ (X∝𝑖 − �̅�𝑖)(X∝𝑖 − �̅�𝑖)̀
𝑛𝑖
∝=1                   (3) 

𝑆𝑖 = 𝐴𝑖 (𝑛𝑖 − 1)⁄ , 𝑖 = 1,2                           (4) 

Then�̅�1, �̅�2, 𝐴1 and 𝐴2 which are sufficient for the mean vectors and dispersion matrices, are 

independent random variables having the distributions:  

�̅�𝑖 ~ 𝑁 (𝜇𝑖,
∑𝑖

𝑛𝑖) and 𝐴𝑖 ~ Wp(ni – 1, ∑i ), i = 1,2            (5) 

Where Wp(r, ∑) denotes the p-dimensional Wishart distribution with df = r and scale matrix 

∑.  �̅�𝑖 𝑎𝑛𝑑 𝑆𝑖 𝑎𝑟𝑒 the sample mean vector and sample variance covariance of the 𝑖𝑡ℎ sample. 

 

Yao (1965) procedure: 

The procedure is based on 𝑇2 ~ (vp/(v-p+1) 𝐹𝑝𝑣−𝑝+1with the degrees of freedom v given by:  

 

𝑣 =  [
1

𝑛1
(

�̅�′𝑑�̃�−1�̃�1�̃�−1�̅�𝑑

�̅�𝑑�̃�−1�̅�𝑑
) +

1

𝑛2
(

�̅�′𝑑�̃�−1�̃�2�̃�−1�̅�𝑑

�̅�𝑑�̃�−1�̅�𝑑
)]  

  

𝑇𝑌𝑎𝑜 =
(𝑣−𝑝+1)𝑇2

𝑣𝑝
                      (6) 

 

Johansen (1980) procedure:  

The procedure is based on  𝑇2~ qFp,v 

where 

q = p + 2D – 6D/[p(p-1)+2],  

and  vjoh=p(p+2)/3D                               

 

𝐷 =  
1

2
∑ {𝑡𝑟 [(𝐼 − (�̃�1

−1
+ �̃�2

−1
)

−1

�̃�𝑖
−1

)
2

] + 𝑡𝑟 [(𝐼 − (�̃�1
−1

+ �̃�2
−1

)
−1

�̃�𝑖
−1

)
2

]}

2

𝑖=1

/𝑛𝑖 
 

𝑇𝐽𝑜ℎ =
𝑇2

𝑞
                      (7) 

 

Krishnamoorthy and Yu (2004) procedure: 

The procedure is based on  𝑇2 ~ (𝑣𝑘𝑦𝑝/(v-p+1) 𝐹𝑝𝑣−𝑝+1with the d.f. defined by  

𝑣𝑘𝑦𝑝 = 𝑝 + 𝑝2 𝐶(�̃�1, �̃�2)⁄  

𝐶(�̃�1, �̃�2) =  1
𝑛1

⁄ {𝑡𝑟 [(�̃�1, �̃�−1)
2

] + [𝑡𝑟(�̃�1, �̃�−1)]
2

} 
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              + 1
𝑛2

⁄ {𝑡𝑟 [(�̃�2, �̃�−1)
2

] + [𝑡𝑟(�̃�2, �̃�−1)]
2

} 

𝑇𝑘𝑟𝑖𝑠ℎ =
(𝑣𝑘𝑦𝑝−𝑝+1)𝑇2

𝑣𝑘𝑦𝑝
                      (8) 

Adebayo’s (2019) procedure: 

𝑓𝐴𝑑𝑒𝑏𝑎𝑦𝑜 =
(∑

1

𝑛𝑖((�̅�1−�̅�2)𝑆−1𝑆𝑖𝑆−1(�̅�1−�̅�2)))
2

∑
1

𝑛𝑖
2(𝑛𝑖−1)

((�̅�1−�̅�2)𝑆−1𝑆𝑖𝑆−1(�̅�1−�̅�2))2
  

 

and𝑇2~ (
𝑓𝐴𝑑𝑒𝑏×𝑝

(𝑓𝐴𝑑𝑒𝑏−𝑝+1)
) 𝐹𝑝,𝑓𝐴𝑑𝑒𝑏−𝑝+1 approximately  

     

𝑇𝐴𝑑𝑒𝑏𝑎𝑦𝑜 =
(𝑓−𝑝+1)𝑇2

𝑓×𝑝
                    (9) 

Statistical significance is assessed by comparing the𝑇𝐴𝑑𝑒𝑏 statistic to its critical 

value𝐹∝ (𝑝, 𝑓𝐴𝑑𝑒𝑏 − 𝑝 + 1) , that is, a critical value from the F distribution with p and degrees 

of freedom,  𝑓𝐴𝑑𝑒𝑏 − 𝑝 + 1.  

To compute the above procedures, each method is encoded in R software and the program 

designed in sequential order analyzing either power or type I error rate depending on the mean 

setting. The codes were designed with the ability of generation multivariate normal data 

randomly from package called MASS. For each run the program will execute the process 1000 

times out of which the average number null hypothesis is rejected will be considered as power 

or type I error rate depending on the mean setting.  

 

RESULTS AND DISCUSSION 

A simulation study using R package was conducted in order to estimate and compare the Type 

I error rate and power for each of the four discussed approximate solution (Johanson, Yao, 

Krishnamoorthy and Adebayos’ procedures). The simulations are carried out when the null 

hypothesis is true and not true, for Multivariate normal distribution, when there are unequal 

variance – covariance matrix. Five (5) factors were considered in the simulation: the sample 

size, the number of variables p, variance co-variance matrices, mean vectors and significant 

levels. 

Power of the test  

The settings and conditions considered are when S1 > S2, P=2, P=3and α = 0.01, 0.025 and 

0.05. The power was tested using both small and large sample sizes under the following settings 

“ n1= n2, n1 > n2 and n1 < n2”  respectively. 
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Table 1:   Power of the test 

P=2 S1 > S2 Combination of different sample size α = 0.01 

�̅�𝟏 = (𝟐𝟎    𝟑𝟎) Sample 

size 

Equal sample size 

𝑛1 = 𝑛2 

Unequal sample size 

𝑛1 > 𝑛2 

Unequal sample size 

𝑛1 < 𝑛2 �̅�𝟐 = (𝟏𝟓    𝟐𝟎) 

�̅�𝟏 − �̅�𝟐 = (𝟓    𝟏𝟎) TEST 10, 10 200,  200 25, 15 300,  200 10,  20 200, 500 

S1=(
𝟖𝟎𝟎 𝟐𝟎𝟎
𝟐𝟎𝟎 𝟖𝟎𝟎

) John 0.06085 

 
0.6894 

 
0.11488 

 
0.8432 

 
0.07196 

 
0.7177 

 

Yao 

 

0.06202 

 
0.6906 

 
0.11636 

 
0.8438 

 
0.07286 
 

0.7187 

 

S2=(
𝟗𝟎 𝟔𝟎
𝟔𝟎 𝟗𝟎

) 

 

Krish 0.05966 

 
0.6900 

 
0.11535 

 
0.8435 

 
0.07025 
 

0.7184 

Adebayo 0.06202 

 
0.6906 

 
0.11814 

 
0.8442 

 
0.06830 
 

0.7179 

 

 

Table 2:   Power of the test 

P=2 S1 > S2 Combination of different sample size α = 0.025 

�̅�𝟏 = (𝟐𝟎    𝟑𝟎) Sample 

size 

Equal sample size 

𝑛1 = 𝑛2 

Unequal sample size 

𝑛1 > 𝑛2 

Unequal sample size 

𝑛1 < 𝑛2 �̅�𝟐 = (𝟏𝟓    𝟐𝟎) 

�̅�𝟏 − �̅�𝟐 = (𝟓    𝟏𝟎) TEST 10, 10 200,  200 25, 15 300,  200 10,  20 200, 500 

S1=(
𝟖𝟎𝟎 𝟐𝟎𝟎
𝟐𝟎𝟎 𝟖𝟎𝟎

) John 0.1150 

 
0.7717 

 
0.1746 

 
0.9076 

 
0.1158 

 
0.8028 

 

Yao 

 

0.1154 

 
0.7724 

 
0.1756 

 
0.9079 

 
0.1158 
 

0.8033 

 

S2=(
𝟗𝟎 𝟔𝟎
𝟔𝟎 𝟗𝟎

) 

 

Krish 0.1130 

 
0.7720 

 
0.1349 

 
0.1748 
 

0.1133 
 

0.8031 

 

Table 3:   Power of the test 

P=2 S1 > S2 Combination of different sample size α = 0.05 

�̅�𝟏 = (𝟐𝟎    𝟑𝟎) Sample 

size 

Equal sample size 

𝑛1 = 𝑛2 

Unequal sample size 

𝑛1 > 𝑛2 

Unequal sample size 

𝑛1 < 𝑛2 �̅�𝟐 = (𝟏𝟓    𝟐𝟎) 

�̅�𝟏 − �̅�𝟐 = (𝟓    𝟏𝟎) TEST 10, 10 200,  200 25, 15 300,  200 10,  20 200, 500 

S1=(
𝟖𝟎𝟎 𝟐𝟎𝟎
𝟐𝟎𝟎 𝟖𝟎𝟎

) John 0.1839 

 
0.8448 

 
0.2476 

 
0.9350 

 
0.1158 

 
0.8621 

 

Yao 

 

0.1833 

 
0.8452 

 
0.2485 

 
0.9351 

 
0.1158 
 

0.8623 

 

S2=(
𝟗𝟎 𝟔𝟎
𝟔𝟎 𝟗𝟎

) 

 

Krish 0.1810 
 

0.8450 

 
0.2474 

 
0.9350 

 
0.1133 
 

0.8622 
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From the Table 1 and 2 Yao and Adebayos’ procedure tend to have equal and highest power 

when we have equal sample sizes at both small and large sizes. In Table 1, 2 and 3 when the 

sample size of n1 > n2 Adebayos’ procedure has the highest power. At a sample size (200, 500) 

Yaos’ procedure has the highest power in all the scenarios. Table 2 and 3 has shown that 

Johanson and Yao have the highest and equal power.  

 

Table 4:   Power of the test 

P=3 S1 > S2 Combination of different sample size α = 0.01 

�̅�𝟏 = (𝟏𝟎  𝟑𝟎  𝟐𝟎) Sample 

size 

Equal sample size 

𝑛1 = 𝑛2 

Unequal sample size 

𝑛1 > 𝑛2 

Unequal sample size 

𝑛1 < 𝑛2 �̅�𝟐 = (𝟖 𝟐𝟕  𝟏𝟖 ) 

(�̅�𝟏 − �̅�𝟐) = (𝟐  𝟑  𝟐) TEST 10, 10 200,  200 25, 15 300,  200 10,  20 200, 500 

S1=(
𝟗𝟎𝟎 𝟕𝟎𝟎 𝟓𝟎𝟎
𝟕𝟎𝟎 𝟗𝟎𝟎 𝟑𝟎𝟎
𝟓𝟎𝟎 𝟑𝟎𝟎 𝟗𝟎𝟎

) 
John 0.02939 

 
0.06052 

 
0.03516 

 
0.06959 

 
0.03094 

 
0.06467 

 

Yao 

 

0.03027 

 
0.06079 

 
0.03595 

 
0.06980 

 
0.03312 
 

0.06507 

 

S2= (
𝟐𝟎𝟎 𝟗𝟎 𝟓𝟎
𝟗𝟎 𝟐𝟎𝟎 𝟐𝟎
𝟓𝟎 𝟐𝟎 𝟐𝟎𝟎

) 

 

Krish 0.02979 

 
0.06084 

 
0.03603 

 
0.06984 

 
0.03135 
 

0.06512 
 

Adebayo 0.03027 

 
0.06079 

 
0.03553 

 
0.06984 

 
0.02949 
 

0.06473 

 

 
Table 5:   Power of the test 

P=3 S1 > S2 Combination of different sample size α = 0.025 

�̅�𝟏 = (𝟏𝟎  𝟑𝟎  𝟐𝟎) Sample 

size 

Equal sample size 

𝑛1 = 𝑛2 

Unequal sample size 

𝑛1 > 𝑛2 

Unequal sample size 

𝑛1 < 𝑛2 �̅�𝟐 = (𝟖 𝟐𝟕  𝟏𝟖 ) 

(�̅�𝟏 − �̅�𝟐) = (𝟐  𝟑  𝟐) TEST 10, 10 200,  200 25, 15 300,  200 10,  20 200, 500 

S1=(
𝟗𝟎𝟎 𝟕𝟎𝟎 𝟓𝟎𝟎
𝟕𝟎𝟎 𝟗𝟎𝟎 𝟑𝟎𝟎
𝟓𝟎𝟎 𝟑𝟎𝟎 𝟗𝟎𝟎

) 
John 0.06439 

 
0.1127 

 
0.07309 

 
0.1262 

 
0.06713 

 
0.1136 

 

Yao 

 

0.06552 

 
0.1130 

 
0.07424 

 
0.1265 

 
0.07123 

 
0.1142 

 

S2= (
𝟐𝟎𝟎 𝟗𝟎 𝟓𝟎
𝟗𝟎 𝟐𝟎𝟎 𝟐𝟎
𝟓𝟎 𝟐𝟎 𝟐𝟎𝟎

) 

 

Krish 0.06509 

 
0.1131 0.07447 

 
0.1266 

 
0.06783 

 
0.1142 

 

Adebayo 0.06552 

 
0.1130 

 
0.07374 

 
0.1266 

 
0.06525 

 
0.1137 
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Table 6:   Power of the test 

P=3 S1 > S2 Combination of different sample size α = 0.05 

�̅�𝟏 = (𝟏𝟎  𝟑𝟎  𝟐𝟎) Sample 

size 

Equal sample size 

𝑛1 = 𝑛2 

Unequal sample size 

𝑛1 > 𝑛2 

Unequal sample size 

𝑛1 < 𝑛2 �̅�𝟐 = (𝟖 𝟐𝟕  𝟏𝟖 ) 

(�̅�𝟏 − �̅�𝟐) = (𝟐  𝟑  𝟐) TEST 10, 10 200,  200 25, 15 300,  200 10,  20 200, 500 

S1=(
𝟗𝟎𝟎 𝟕𝟎𝟎 𝟓𝟎𝟎
𝟕𝟎𝟎 𝟗𝟎𝟎 𝟑𝟎𝟎
𝟓𝟎𝟎 𝟑𝟎𝟎 𝟗𝟎𝟎

) 
John 0.1133 

 
0.1721 

 
0.1201 

 
0.1883 

 
0.1152 

 
0.1751 
 

Yao 

 

0.1152 

 
0.1725 

 
0.1216 

 
0.1886 

 
0.1199 

 
0.1757 

 

S2= (
𝟐𝟎𝟎 𝟗𝟎 𝟓𝟎
𝟗𝟎 𝟐𝟎𝟎 𝟐𝟎
𝟓𝟎 𝟐𝟎 𝟐𝟎𝟎

) 

 

Krish 0.114 

 
0.1726 0.1218 

 
0.1886 

 
0.1161 

 
0.1757 

 

 

When P variable increases to P=3 the power of Yao decreases and unable to equalize with 

Adebayo under the sample size is large and equal (200, 200). Adebayo also decreases when 

sample size is small and unequal (25, 15). But the power of Krishnamoorthy increases as seen 

in Table 4 and 5 when sample size is large and unequal (200, 500). 

Type I Error Rate 

The upper limit was estimated using α ̂ = α + 2√
α (1−α )

𝑁
 and lower limit was obtained 

using α ̂ = α − 2√
α (1−α )

𝑁
,  N is the number of time the process runs in R and N= 1000. 

Thus, when α = 0.05 the interval ranges from 0.036 to 0.064, α = 0.01 the interval ranges from 

0.004 to 0.016 and α = 0.025 the interval ranges from 0.015 to 0.035. That means all values for 

the estimated error which are lower than or higher than the respective values under their 

corresponding significance level (α) will be considered as non-robust since they lie outside the 

interval and will be marked with a star (*). 

The settings and conditions considered are when S1 > S2, P=2, P=3 and α = 0.01, 0.025 and 

0.05 respectively. The estimation of type I error was carryout with small and large sample sizes 

under the following settings “ n1= n2, n1 > n2 and n1 < n2”. 
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Table 7: Type I error rate 

P=2 S1 > S2 Combination of different sample size α = 0.01 

�̅�𝟏 = (𝟐    𝟑) Sample 

size 

Equal sample size 

𝑛1 = 𝑛2 

Unequal sample size 

𝑛1 > 𝑛2 

Unequal sample size 

𝑛1 < 𝑛2 �̅�𝟐 = (𝟐    𝟑) 

�̅�𝟏 − �̅�𝟐 = (𝟓    𝟏𝟎) TEST 10, 10 200,  200 25, 15 300,  200 10,  20 200, 500 

S1=(
𝟖𝟎𝟎 𝟐𝟎𝟎
𝟐𝟎𝟎 𝟖𝟎𝟎

) John 0.014 

 
0.006 

 
0.012 

 
0.012 

 
0.009 

 
0.013 

 

Yao 

 

0.015 

 
0.006 

 
0.012 

 
0.012 

 
0.011 0.013 

 

S2=(
𝟗𝟎 𝟔𝟎
𝟔𝟎 𝟗𝟎

) 

 

Krish 0.014 0.006 

 
0.012 

 
0.012 

 
0.008 0.013 

 

 
From Table 7, all procedures deflated when sample size is (200, 200) and (10, 20) except Yao 

which is close to nominal level. When sample sizes are n1> 𝑛2 all procedures are close to 

nominal level. All procedures inflated when sample sizes are(10, 10) 

 
Table 8: Type I error rate 

P=2 S1 > S2 Combination of different sample size α = 0.025 

�̅�𝟏 = (𝟐𝟎    𝟑𝟎) Sample 

size 

Equal sample size 

𝑛1 = 𝑛2 

Unequal sample size 

𝑛1 > 𝑛2 

Unequal sample size 

𝑛1 < 𝑛2 �̅�𝟐 = (𝟏𝟓    𝟐𝟎) 

�̅�𝟏 − �̅�𝟐 = (𝟓    𝟏𝟎) TEST 10, 10 200,  200 25, 15 300,  200 10,  20 200, 500 

S1=(
𝟖𝟎𝟎 𝟐𝟎𝟎
𝟐𝟎𝟎 𝟖𝟎𝟎

) John 0.026 

 
0.025 

 
0.012 

 
0.021 

 
0.025 

 
0.025 

 

Yao 

 

0.026 

 
0.025 

 
0.012 

 
0.021 

 
0.026 0.025 

 

S2=(
𝟗𝟎 𝟔𝟎
𝟔𝟎 𝟗𝟎

) 

 

Krish 0.025 0.025 

 
0.012 

 
0.021 

 
0.025 0.025 

 

 

From Table 8; When sample sizes are (200, 200) and (200, 500) all procedures attained the 

nominal level while in the rest of the cases most of the procedures are close to nominal level. 
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Table 9:   Type I error rate 

P=2 S1 > S2 Combination of different sample size α = 0.05 

�̅�𝟏 = (𝟐    𝟑) Sample 

size 

Equal sample size 

𝑛1 = 𝑛2 

Unequal sample size 

𝑛1 > 𝑛2 

Unequal sample size 

𝑛1 < 𝑛2 �̅�𝟐 = (𝟐    𝟑) 

�̅�𝟏 − �̅�𝟐 = (𝟓    𝟏𝟎) TEST 10, 10 200,  200 25, 15 300,  200 10,  20 200, 500 

S1=(
𝟖𝟎𝟎 𝟐𝟎𝟎
𝟐𝟎𝟎 𝟖𝟎𝟎

) John 0.053 

 
0.055 

 
0.047 

 
0.043 

 
0.041 

 
0.051 

 

Yao 

 

0.057 0.055 

 
0.046 0.043 

 
0.041 

 
0.051 

 

S2=(
𝟗𝟎 𝟔𝟎
𝟔𝟎 𝟗𝟎

) 

 

Krish 0.053 

 
0.055 

 
0.047 

 
0.043 

 
0.04 
 

0.051 
 

 

From Table 9; all procedures are closer to nominal level at sample sizes (200, 500) and (25, 

15) while Adebayo is exactly at nominal level. There is deflation and inflation in the rest of the 

setting.   

Table 10:  Type I error rate 

P=3 S1 > S2 Combination of different sample size α = 0.01 

�̅�𝟏 = (𝟏𝟎  𝟏𝟎  𝟏𝟎) Sample 

size 

Equal sample size 

𝑛1 = 𝑛2 

Unequal sample size 

𝑛1 > 𝑛2 

Unequal sample size 

𝑛1 < 𝑛2 �̅�𝟐 = (𝟏𝟎 𝟏𝟎  𝟏𝟎) 

(�̅�𝟏 − �̅�𝟐) = (𝟎  𝟎  𝟎) TEST 10, 10 200,  200 25, 15 300,  200 10,  20 200, 500 

S1=(
𝟗𝟎𝟎 𝟕𝟎𝟎 𝟓𝟎𝟎
𝟕𝟎𝟎 𝟗𝟎𝟎 𝟑𝟎𝟎
𝟓𝟎𝟎 𝟑𝟎𝟎 𝟗𝟎𝟎

) 
John 0.005 

 
0.009 

 
0.01 

 
0.01 

 
0.01 

 
0.008 

 

Yao 

 

0.005 

 
0.01 

 
0.011 

 
0.01 

 
0.014 0.009 

S2= (
𝟐𝟎𝟎 𝟗𝟎 𝟓𝟎
𝟗𝟎 𝟐𝟎𝟎 𝟐𝟎
𝟓𝟎 𝟐𝟎 𝟐𝟎𝟎

) 

 

Krish 0.006 0.009 

 
0.011 

 
0.01 

 
0.01 
 

0.009 

 

From Table 10, at sample sizes (300, 200) all procedures attained the nominal level. At a 

sample size (200, 200) Yao and Adebayo attained exactly nominal level and at a sample size 

(10, 20) Johanson and Krishnamoorthy attained exactly the nominal level. There is deflation 

when sample size is (10, 10). 
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Table 11: Type I error rate 

P=3 S1 > S2 Combination of different sample size α = 0.025 

�̅�𝟏 = (𝟏𝟎  𝟏𝟎  𝟏𝟎) Sample 

size 

Equal sample size 

𝑛1 = 𝑛2 

Unequal sample size 

𝑛1 > 𝑛2 

Unequal sample size 

𝑛1 < 𝑛2 �̅�𝟐 = (𝟏𝟎 𝟏𝟎  𝟏𝟎) 

(�̅�𝟏 − �̅�𝟐) = (𝟎  𝟎  𝟎) TEST 10, 10 200,  200 25, 15 300,  200 10,  20 200, 500 

S1=(
𝟗𝟎𝟎 𝟕𝟎𝟎 𝟓𝟎𝟎
𝟕𝟎𝟎 𝟗𝟎𝟎 𝟑𝟎𝟎
𝟓𝟎𝟎 𝟑𝟎𝟎 𝟗𝟎𝟎

) 
John 0.035* 

 

0.024 

 
0.023 

 
0.219 

 
0.027 

 
0.025 

 

Yao 

 

0.037* 0.024 

 
0.023 

 
0.221 

 
0.033 0.025 

 

S2= (
𝟐𝟎𝟎 𝟗𝟎 𝟓𝟎
𝟗𝟎 𝟐𝟎𝟎 𝟐𝟎
𝟓𝟎 𝟐𝟎 𝟐𝟎𝟎

) 

 

Krish 0.035* 

 

0.024 

 
0.025 0.221 

 
0.028 0.025 

 

 

From Table 11, all procedures lie outside the interval at a sample sizes (10, 10) and consider 

non-robust and when sample sizes are (200, 500) all procedures were exactly at nominal level. 

Table 12: Type I error rate 

P=3 S1 > S2 Combination of different sample size α = 0.05 

�̅�𝟏 = (𝟏𝟎  𝟏𝟎  𝟏𝟎) Sample 

size 

Equal sample size 

𝑛1 = 𝑛2 

Unequal sample size 

𝑛1 > 𝑛2 

Unequal sample size 

𝑛1 < 𝑛2 �̅�𝟐 = (𝟏𝟎 𝟏𝟎  𝟏𝟎) 

(�̅�𝟏 − �̅�𝟐) = (𝟎  𝟎  𝟎) TEST 10, 10 200,  200 25, 15 300,  200 10,  20 200, 500 

S1=(
𝟗𝟎𝟎 𝟕𝟎𝟎 𝟓𝟎𝟎
𝟕𝟎𝟎 𝟗𝟎𝟎 𝟑𝟎𝟎
𝟓𝟎𝟎 𝟑𝟎𝟎 𝟗𝟎𝟎

) 
John 0.049 

 
0.048 

 
0.043 

 
0.051 

 
0.053 

 
0.052 

 

Yao 

 

0.058 

 
0.048 

 
0.045 0.051 

 
0.065* 
 

0.052 

 

S2= (
𝟐𝟎𝟎 𝟗𝟎 𝟓𝟎
𝟗𝟎 𝟐𝟎𝟎 𝟐𝟎
𝟓𝟎 𝟐𝟎 𝟐𝟎𝟎

) 

 

Krish 0.05 

 
0.048 

 
0.045 0.051 

 
0.057 
 

0.052 
 

 

From Table 12, Krishnamoorthy is exactly at nominal level when sample size is (10, 10) and 

Yao is non-robust at sample size (10, 20) while in the rest of the settings most of the procedures 

are close to nominal level and said to be good. 
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Summary of the Findings 

Yao and Adebayos’ procedures tend to have equal and highest power when we have equal 

sample sizes at both small and large sample sizes when P=2. In Table 1, 2 and 3 when the 

sample size n1> n2, Adebayos’ procedure has the highest power. At a sample size (200, 500) 

Yaos’ procedure has the highest power in all the scenarios. Table 2 and 3 depict that Johanson 

and Yao have equal and highest power. When P variable increases to P=3 the power of Yao 

decreases and unable to equalize with Adebayo under the sample size (200, 200). Adebayo also 

decreases under a sample size (25, 15). But the power of Krishnamoorthy increases as seen in 

Table 4 and 5 under (200, 500) sample size. 

From Table 7, all procedures deflated when sample size is (200, 200) and (10, 20) except Yao 

which is close to nominal level. When sample sizes are n1> 𝑛2 all procedures are closer to 

nominal level. All procedures inflated when sample size is (10, 10). From Table 11, all 

procedures lie outside the interval and consider non-robust and when sample size is (200, 500) 

all procedures were at exactly nominal level. From Table 12, Krishnamoorthy is exactly at 

nominal level when sample size is (10, 10) and Yao is non-robust at sample size (10, 20) while 

in the rest of the settings most of the procedures are close to nominal level. 

CONCLUSION 

It is universally accepted that to date, there is no single procedure that can positively contest or 

compete in all conditions under Multivariate Behrens Fisher Problem.  However, in this 

comparative study we are able to discovered and conclude that some of these existing 

procedures have equal and highest power in some certain settings like Yao and Adebayo, 

Johansen and Yao, Krishnamoorthy and Adebayo, Yao and Krishnamoorthy but when P-

variables increases we also found that these procedures with equal power varies significantly, 

where as some procedures’ power decrease while some increases in power.  For type I error 

rate where robustness and nominal level matters we found that under some settings none of the 

procedure maintained nominal level and some procedures lie outside the interval and 

considered non-robust. Yao and Adebayos were found good when P=2 and sample size are n1> 

n2, it is discovered that at a sample size (300, 200) all procedures attained the nominal level. 

Further Research 

We recommend that the subsequent researchers should design more complicated settings and 

conditions in which more procedures could be investigated. Also need for better extension of 

univariate form of this problem to multivariate form is seriously required, so that one may be 

able to achieve a better performing procedure under all settings.  

Furthermore, a high value of (P >= 4) using different settings and conditions other than the 

ones used in this research is recommended. 
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