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Abstract 

Multivariate Behrens-Fisher Problem is a problem that deals with testing the equality of two means 

from multivariate normal distribution when the covariance matrices are unequal and unknown. 

However, there is no single procedure served as a better performing solution to this problem, Adebayo 

(2018). In this study effort is made in selecting five different existing procedures and examined their 

power and rate to which they control type I error using a different setting and conditions observed 

from previous studies. To overcome this problem a code was designed via R Statistical Software, to 

simulate random normal data and independently run 1000 times using MASS package in other to 

estimate the power and rate at which each procedure control type I error. The simulation result depicts 

that, in a setting when variance covariance matrices   S1 > S2 associated with a sample sizes (n1 > n2) in 

Table 4.1, 4.2, 4.5, and 4.6, shows that, Adebayos’ procedure performed better but at a sample sizes    

(n1 = n2 and n1 < n2) Hotelling T2 is recommended in terms of power. For type I error rate where 

robustness and nominal level matters we found that under some settings none of the procedure 

maintained nominal level as revealed in Table 4.11 and 4.15. The results presented in Table 4.9 to 

4.16 shows that when nominal level matters Krishnamoorthy came first, followed by Adebayos’, 

Yaos’, Johansons’ then Hotelling T2 were recommended in the sequentially under the settings used in 

this study. 

Keywords: Behrens-Fisher, Power, Type I error, Hotelling’s  T2, Yoa, Johansen, Krishnamoorthy, 

Adebayo 

 

INTRODUCTION 

A statistician by name Walter Behrens in (1929) propose the problem of testing the equality 

of two population means without assuming equal population variances (Yao 1965 and Wang 

1971). Six years later another statistician by name Ronald Fisher (1935) noted that Behrens' 

solution could be derived using Fishers’ concept of fiducial distributions. This makes the 

problem to be known as Behrens-Fisher problem. Many scholars have made efforts extending 
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univariate form of this problem to its multivariate procedures. However, each procedure has 

its own good and weak part. One procedure may be good under a particular condition and 

become weak or moderately perform under another condition and this motivates the 

researcher to designed different conditions under which all selected procedures will be tested 

and judge according to their performances.  

Adebayo and Oyeyemi (2018) developed an alternative procedure to multivariate Behrens–

Fisher problem by using approximate degree of freedom test which was adopted from 

Satterthwaite univariate procedure. They discovered that in Table 2, 4 and 6 when sample 

size are very small (20, 10) proposed procedure is not the best, but when sample size 

increases to (50, 30) and (100, 60), the proposed procedure performed better than the all 

procedures considered. Nel and Van der Merwe performed better when sample size is very 

small (20, 10) followed by Yao, Krishnamoorthy and proposed procedure in term of power of 

the test in all the scenarios considered. In terms of type I error rate, proposed procedure 

competed favorably well with the other procedures selected for their study. Yao, 

Krishnamoorthy, Johanson, Nel and Van der Merwe and the proposed procedures are 

fluctuating (inflated and deflated) around the nominal level while Hotellling T square and 

Yanagihara are below the nominal level. 

 

COMPUTATIONAL PROCEDURES  

Consider two 𝜌-variate normal populations N(μ1, ∑1) and N(μ2, ∑2) where μ1 and μ2 are 

unknown p x 1 vectors and ∑1 and ∑2 are unknown p × p positive definite matrices.  

Let Xα1 ~ N(μ1, ∑1), α = 1, 2,…., n1, and Xα2 ~ N(μ2, ∑2), α = 1, 2,…., n2 denote random 

samples from these two populations, respectively. We are interested in the testing 

problem.   

  Ho: μ1 = μ2   against   H1 : μ1 ≠ μ2                           (1) 

  For i = 1, 2 Let  

𝑋̅𝑖 =  
1

𝑛𝑖
 ∑ X∝𝑖,

𝑛𝑖
∝=1                                     (2) 

𝐴𝑖 = ∑ (X∝𝑖 − 𝑋̅𝑖)(X∝𝑖 − 𝑋̅𝑖)̀
𝑛𝑖
∝=1                      (3) 

𝑆𝑖 = 𝐴𝑖 (𝑛𝑖 − 1)⁄ , 𝑖 = 1,2                           (4) 

Then 𝑋̅1, 𝑋̅2, 𝐴1 and 𝐴2 which are sufficient for the mean vectors and dispersion 

matrices, are independent random variables having the distributions:  

 𝑋̅𝑖 ~ 𝑁 (𝜇𝑖,
∑𝑖

𝑛𝑖). and 𝐴𝑖  ~ Wp(ni – 1, ∑i ), i = 1,2                                                         (5) 

Where Wp(r, ∑) denotes the p-dimensional Wishart distribution with df = r and scale 

matrix ∑.  𝑋̅𝑖 𝑎𝑛𝑑 𝑆𝑖 𝑎𝑟𝑒  the sample mean vector and sample variance covariance of the 

 𝑖𝑡ℎ sample. 
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The Hotelling T-square (1930): The two sample statistic is given by 

𝑇2 =  
𝑛1𝑛2

𝑛1+𝑛2
(𝑋̅1 − 𝑋̅2)`𝑆̃𝑖

−1
(𝑋̅1 − 𝑋̅2)        

where 

𝑆̃𝑝𝑙 =  
1

𝑛1 + 𝑛2 − 2
[(𝑛1 − 1)𝑆1(𝑛2 − 1)𝑆2]    

 

𝑣ℎ𝑜𝑡𝑒𝑙 =
(𝑁−𝑝+1)

𝑝(𝑁−2)
𝑇2                                (6) 

 

Yao (1965) procedure: 

The procedure is based on 𝑇2 ~ (vp/(v-p+1) 𝐹𝑝𝑣−𝑝+1 with the degrees of freedom v 

given by:  

 

𝑣 =  [
1

𝑛1
(

𝑋̅′𝑑𝑆̃−1𝑆̃1𝑆̃−1𝑋̅𝑑

𝑋̅𝑑𝑆̃−1𝑋̅𝑑
) +

1

𝑛2
(

𝑋̅′𝑑𝑆̃−1𝑆̃2𝑆̃−1𝑋̅𝑑

𝑋̅𝑑𝑆̃−1𝑋̅𝑑
) ]   

  

𝑇𝑌𝑎𝑜 =
(𝑣−𝑝+1)𝑇2

𝑣𝑝
                                                               (7) 

 

Johansen (1980) procedure:  

The procedure is based on  𝑇2~ qFp,v  

where  

q = p + 2D – 6D/ [p(p-1)+2],   

and  vjoh=p(p+2)/3D                                                                             

 

𝐷 =  
1

2
∑ {𝑡𝑟 [(𝐼 − (𝑆̃1

−1
+ 𝑆̃2

−1
)

−1

𝑆̃𝑖
−1

)
2

] + 𝑡𝑟 [(𝐼 − (𝑆̃1
−1

+ 𝑆̃2
−1

)
−1

𝑆̃𝑖
−1

)
2

]} /𝑛𝑖

2

𝑖=1

 

 

𝑇𝐽𝑜ℎ =
𝑇2

𝑞
                      (8) 
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Krishnamoorthy and Yu (2004) procedure: 

The procedure is based on  𝑇2 ~ (𝑣𝑘𝑦𝑝/(v-p+1) 𝐹𝑝𝑣−𝑝+1 with the d.f.v defined by  

𝑣𝑘𝑦𝑝 = 𝑝 + 𝑝2 𝐶(𝑆̃1, 𝑆̃2)⁄  

𝐶(𝑆̃1, 𝑆̃2) =  1
𝑛1

⁄ {𝑡𝑟 [(𝑆̃1, 𝑆̃−1)
2

] + [𝑡𝑟(𝑆̃1, 𝑆̃−1)]
2

} 

              + 1
𝑛2

⁄ {𝑡𝑟 [(𝑆̃2, 𝑆̃−1)
2

] + [𝑡𝑟(𝑆̃2, 𝑆̃−1)]
2

}      

𝑇𝑘𝑟𝑖𝑠ℎ =
(𝑣𝑘𝑦𝑝−𝑝+1)𝑇2

𝑣𝑘𝑦𝑝
                      (9) 

 Adebayo’s (2019) procedure: 

𝑓𝐴𝑑𝑒𝑏𝑎𝑦𝑜 =
(∑

1

𝑛𝑖((𝑋̅1−𝑋̅2)𝑆−1𝑆𝑖𝑆−1(𝑋̅1−𝑋̅2)))
2

∑
1

𝑛𝑖
2(𝑛𝑖−1)

((𝑋̅1−𝑋̅2)𝑆−1𝑆𝑖𝑆−1(𝑋̅1−𝑋̅2))2
  

 

and    𝑇2~ (
𝑓𝐴𝑑𝑒𝑏×𝑝

(𝑓𝐴𝑑𝑒𝑏−𝑝+1)
) 𝐹𝑝,𝑓𝐴𝑑𝑒𝑏−𝑝+1 approximately  

                

𝑇𝐴𝑑𝑒𝑏𝑎𝑦𝑜 =
(𝑓−𝑝+1)𝑇2

𝑓×𝑝
                    (10) 

Statistical significance is assessed by comparing the 𝑇𝐴𝑑𝑒𝑏  statistic to its critical value 

𝐹∝ (𝑝, 𝑓𝐴𝑑𝑒𝑏 − 𝑝 + 1) , that is, a critical value from the F distribution with p and degrees of 

freedom,   𝑓𝐴𝑑𝑒𝑏 − 𝑝 + 1.  

To compute the above procedures, each method is encoded in R software and the program 

designed in sequential order analysing either power or type I error rate depending on the 

mean setting. The codes were designed with the ability of generation multivariate normal data 

randomly from package called MASS. For each run the program will execute the process 

1000 times out of which the average number null hypothesis is rejected will be considered as 

power or type I error rate depending on the mean setting. 

 

NUMERICAL SIMULATION AND DISCUSSION OF RESULTS  

The analysis is sectionalise in to two different categories; power of a test and level at which 

each procedure control type I error rate at a giving condition. Many factors were also 

considered such as number of variables (P), Sample sizes, Level of significance (alpha, α) 

and variance covariance matrices. 
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For P, the number of variables we consider two levels which are 2 and 3, for alpha we 

consider 0.01 and 0.05, for sample sizes we consider (𝑛1 = 𝑛2, 𝑛1 < 𝑛2, 𝑛1 > 𝑛2) and for 

covariance matrices we consider when (𝑆1 > 𝑆2 𝑎𝑛𝑑 𝑆1 < 𝑆2)  respectively. 

4.1 Power of a test  

4.1.1  Power of a test when S1 > S2 and P=2 at both level of significances 0.01 and 0.05 

Table 4.1: Power of the Test 

P=2 S1 > S2 Combination of different sample size α = 0.01 
𝑋̅1 = (12    10) Sample 

size 
𝑛1 = 𝑛2 𝑛1 > 𝑛2 𝑛1 < 𝑛2 

𝑋̅2 = (3.7    2.4) TEST 15, 15 50, 50 30, 15 200, 100 10, 20 60, 100 

S1=(
280 98
98 280

) Hotel 0.1198 0.3566 0.0984 0.6779 0.1949 0.6120 

Adebayo 0.1137 0.3511 0.1899 0.8982 0.0827 0.4243 

S2(
35 20
20 35

) 
 

Krish 0.1121 0.3505 0.1884 0.8977 0.0860 0.4259 

Yao 0.1137 0.3511 0.1887 0.8978 0.0886 0.4264 

(𝑋̅1 − 𝑋̅2) = (8.3    7.1) Johan 0.1121 0.3490 0.1875 0.8974 0.0880 0.4244 

 

Table 4.2: Power of the Test 

P=2 S1 > S2 Combination of different sample size α = 0.05 
𝑋̅1 = (12    10) Sample 

size 
𝑛1 = 𝑛2 𝑛1 > 𝑛2 𝑛1 < 𝑛2 

𝑋̅2 = (3.7    2.4) TEST 15, 15 50, 50 30, 15 200, 100 10, 20 60, 100 

S1=(
280 98
98 280

) Hotel 0.2739 0.5620 0.2458 0.8441 0.3535 0.7840 

Adebayo 0.2711 0.5602 0.3831 0.9629 0.2192 0.6398 

S2(
35 20
20 35

) 
 

Krish 0.2697 0.5598 0.3815 0.9627 0.2231 0.6408 

Yao 0.2711 0.5602 0.3818 0.9628 0.2261 0.6410 

(𝑋̅1 − 𝑋̅2) = (8.3    7.1 Johan 0.2710 0.5594 0.3815 0.9627 0.2272 0.6404 

 
Simulation result of power from Table 4.1 and 4.2 depicts that when S1 > S2 and P=2 at both   

level of significances 0.01 and 0.05, for a sample sizes (n1 = n2 and n1 < n2) under the              

following settings (15, 15), (50, 50), (10, 20) and (60, 100) Hotelling T2 is recommended but 

when (n1 > n2) associated with (30, 15) and (200, 100) Adebayos’ is recommended for           

practical use. 
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4.1.2 Power of a test when S1 < S2 and P=2 at both level of significances 0.01 and 0.05 

Table 4.3: Power of the Test 

 

P=2 S1 < S2 Combination of different sample size α = 0.01 
𝑋̅1 = (3.3    2.5) Sample 

size 
𝑛1 = 𝑛2 𝑛1 > 𝑛2 𝑛1 < 𝑛2 

𝑋̅2 = (8.6    5.1) TEST 15, 15 50, 50 30, 15 200, 100 10, 20 60, 100 

S1=(
3.2 2.7
2.7 3.2

) Hotel 0.7558 0.9995 0.9393 1 0.6352 1 

Adebayo 0.7564 0.9996 0.7873 1 0.7920 1 

S2(
9.5 4
4 9.5

) 
 

Krish 0.7476 0.9995 0.7980 1 0.8082 1 

Yao 0.7564 0.9996 0.8060 1 0.8082 1 

(𝑋̅1 − 𝑋̅2) = (−5.3    − 2.6) Johan 0.7477 0.9995 0.7977 1 0.8093 1 

 

Power of a test in Table 4.3, when S1 < S2 at significance level 0.01 revealed that Adebayos’ 

and Yaos’ performed better with equal power when sample size are equal (n1=n2). For a 

sample sizes (60, 100) and (200, 100) all procedures are recommended and produces equal 

power. Krishnamoorthy and Yao yield a better result at a sample size (10, 20) having equal 

power but for a sample size (30, 50) only Hotelling T2 is recommended. 

 

Table 4.4: Power of the Test 

P=2 S1 < S2 Combination of different sample size α = 0.05 
𝑋̅1 = (3.3    2.5) Sample 

size 
𝑛1 = 𝑛2 𝑛1 > 𝑛2 𝑛1 < 𝑛2 

𝑋̅2 = (8.6    5.1) TEST 15, 15 50, 50 30, 15 200, 100 10, 20 60, 100 

S1=(
3.2 2.7
2.7 3.2

) Hotel 0.8916 0.9999 0.9811 1 0.8121 0.8121 

Adebayo 0.8960 0.9999 0.9208 1 0.9115 0.9115 

S2(
9.5 4
4 9.5

) 
 

Krish 0.8927 0.9999 0.9247 1 0.9176 0.9176 

Yao 0.8960 0.9999 0.9271 1 0.9176 0.9176 

(𝑋̅1 − 𝑋̅2) = (−5.3    − 2.6) Johan 0.8940 0.9999 0.9257 1 0.9190 0.9190 

 

Power of a test in Table 4.3 when S1 < S2 at significance level 0.05 revealed that Adebayos’ 

and Yaos’ performed better with equal power when sample size is (15, 15). For a sample 

sizes (60, 100) and (10, 20) Johanson produce a better power. For a sample sizes (50, 50) and 

(200, 100) all procedures have equal power and were good to use for practical perspectives.  
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4.1.3 Power of a test when S1 > S2 and P=3 at both level of significances 0.01 and 0.05 

Table 4.5: Power of the Test 

 

P=3 S1 > S2 Combination of different sample size α = 0.01 
𝑋̅1 = (30  24  50 ) Sample 

size 
𝑛1 = 𝑛2 𝑛1 > 𝑛2 𝑛1 < 𝑛2 

𝑋̅2 = (15  14  29 ) TEST 15, 15 50, 50 30, 15 200, 100 10, 20 60, 100 

S1=(
800 500 300
500 800 250
300 250 800

) 
Hotel 0.1432 0.5207 0.1300 0.8884 0.2185 0.8274 

Adebayo 0.1301 0.5066 0.2597 0.9894 0.0812 0.6127 

S2(
100 50 25
50 100 20
25 20 100

) 

 

Krish 0.1288 0.5080 0.2584 0.9893 0.0859 0.6175 

Yao 0.1301 0.5066 0.2573 0.9893 0.0928 0.6163 

(𝑋̅1 − 𝑋̅2) = (15  10  2 1) Johan 0.1235 0.4973 0.2495 0.9890 0.0863 0.6070 

 
Power of a test presented in Table 4.5 depicts that, for a given sample sizes (n1=n2 and n1<n2) 

Hotelling T2 has the highest power but when (n1 > n2) Adebayos’ procedure has the highest 

power. 

Table 4.6: Power of the Test 

 

P=3 S1 > S2 Combination of different sample size α = 0.05 
𝑋̅1 = (30  24  50 ) Sample 

size 
𝑛1 = 𝑛2 𝑛1 > 𝑛2 𝑛1 < 𝑛2 

𝑋̅2 = (15  14  29 ) TEST 15, 15 50, 50 30, 15 200, 100 10, 20 60, 100 

S1=(
800 500 300
500 800 250
300 250 800

) 
Hotel 0.3197 0.7125 0.3005 0.9622 0.4011 0.9208 

Adebayo 0.3078 0.7053 0.4761 0.9978 0.2231 0.7955 

S2(
100 50 25
50 100 20
25 20 100

) 

 

Krish 0.3068 0.7065 0.4749 0.9978 0.2311 0.7980 

Yao 0.3078 0.7053 0.4736 0.9978 0.2383 0.7973 

(𝑋̅1 − 𝑋̅2) = (15  10  2 1) Johan 0.3001 0.6996 0.4667 0.9977 0.2315 0.7924 

 
Power of a test presented in Table 4.6 depicts that, for a given sample sizes (n1=n2 and n1<n2) 

Hotelling T2 has the highest power. When (n1 > n2) for a sample size (30, 15) Adebayos’ 

perform better but when sample size increase to (200, 100) Adebayo, Krishnamoorthy and 

Yao perform good having equal power.   
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4.1.4 Power of a test when S1 < S2 and P=3 at both level of significances 0.01 and 0.05 

Table 4.7: Power of the Test 

 

P=3 S1 < S2 Combination of different sample size α = 0.01 
𝑋̅1 = (10   15   20) Sample 

size 
𝑛1 = 𝑛2 𝑛1 > 𝑛2 𝑛1 < 𝑛2 

𝑋̅2 = (5    10   15) TEST 15, 15 50, 50 30, 15 200, 100 10, 20 60, 100 

S1=(
5.5 3.2 2.5
3.2 5.5 2.1
2.5 2.1 5.5

) 
Hotel 0.0942 0.2900 0.2103 0.8680 0.0514 0.3455 

Adebayo 0.0813 0.2754 0.0733 0.5694 0.1054 0.5638 

S2(
95 80 70
80 95 60
70 60 95

) 

 

Krish 0.0822 0.2787 0.0767 0.5723 0.1038 0.5645 

Yao 0.0813 0.2754 0.0766 0.5705 0.1019 0.5610 

(𝑋̅1 − 𝑋̅2) = (5   5   5) Johan 0.0791 0.2712 0.0740 0.5653 0.0995 0.5585 

 
Table 4.8: Power of the Test 

 

P=3 S1 < S2 Combination of different sample size α = 0.05 
𝑋̅1 = (10   15   20) Sample 

size 
𝑛1 = 𝑛2 𝑛1 > 𝑛2 𝑛1 < 𝑛2 

𝑋̅2 = (5    10   15) TEST 15, 15 50, 50 30, 15 200, 100 10, 20 60, 100 

S1=(
5.5 3.2 2.5
3.2 5.5 2.1
2.5 2.1 5.5

) 
Hotel 0.2269 0.4953 0.4057 0.9442 0.1563 0.5612 

Adebayo 0.2118 0.4846 0.2173 0.7631 0.2559 0.7539 

S2(
95 80 70
80 95 60
70 60 95

) 

 

Krish 0.2135 0.4875 0.2229 0.7648 0.2542 0.7543 

Yao 0.2118 0.4846 0.2222 0.7637 0.2515 0.7523 

(𝑋̅1 − 𝑋̅2) = (5   5   5) Johan 0.2091 0.4810 0.2185 0.7607 0.2485 0.7508 

 
Power of a test presented in Table 4.7 and 4.8 Hotelling T2 has the highest power when 

sample sizes are equal (n1 = n2 and n1 > n2). But when (n1< n2) associated with a small sample 

size (10, 20) Adebayo perform better and when the sample size increases to (60, 100) 

Krishnamoorthy is recommend.  
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4.2 Type I Error Rate  

4.2.1 Type I Error when S1 > S2 and P=2 at both level of significance 0.01 and 0.05 

Table 4.9: Type I error 

P=2 S1 > S2 Combination of different sample size α = 0.01 
𝑋̅1 = (10    10) Sample 

size 
𝑛1 = 𝑛2 𝑛1 > 𝑛2 𝑛1 < 𝑛2 

𝑋̅2 = (10    10) TEST 15, 15 50, 50 30, 15 200, 100 10, 20 60, 100 

S1=(
280 98
98 280

) Hotel  0.01 0.004 0.001 0.00* 0.067* 0.057* 

Adebayo 0.008 0.004 0.012 0.011 0.009 0.016 

S2(
35 20
20 35

) 
 

Krish 0.008 0.004 0.011 0.011 0.01 0.016 

Yao 0.008 0.004 0.011 0.011 0.011 0.018* 

(𝑋̅1 − 𝑋̅2) = (0    0) Johan 0.008 0.004 0.011 0.011 0.01 0.015 

 

Table 4.9, depicts that, Hotelling T2 (15, 15), Krishnamoorthy and Johanson (10, 20) have 

maintained the nominal level. Hotelling T2 (200, 100), (10, 20), (60, 100) and Yao (60, 100) 

are not robust. There is inflation in type I error rate, when sample sizes are (n1 = n2) and when 

sample size is (n1 > n2) all procedures fluctuate within the range except Hotelling T2 which 

deflated. 

 

Table 4.10: Type I error 

 

P=2 S1 > S2 Combination of different sample size α = 0.05 
𝑋̅1 = (10    10) Sample 

size 
𝑛1 = 𝑛2 𝑛1 > 𝑛2 𝑛1 < 𝑛2 

𝑋̅2 = (10    10) TEST 15, 15 50, 50 30, 15 200, 100 10, 20 60, 100 

S1=(
280 98
98 280

) Hotel 0.052 0.042 0.004* 0.003* 0.172* 0.127* 

Adebayo 0.053 0.042 0.043 0.043 0.047 0.049 

S2(
35 20
20 35

) 
 

Krish 0.052 0.042 0.043 0.043 0.051 0.05 

Yao 0.053 0.042 0.043 0.043 0.054 0.049 

(𝑋̅1 − 𝑋̅2) = (0    0) Johan 0.053 0.042 0.043 0.043 0.054 0.049 

 

Table 4.10, depicts that, Krishnamoorthy (60, 100) have maintained the nominal level. 

Hotelling T2 (30, 15), (200, 100), (10, 20) and (60, 100) are not robust.  
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4.2.2 Type I Error when S1 < S2 and P=2 at both level of significance (0.01 and 0.05) 

Table 4.11: Type I error 

 

P=2 S1 < S2 Combination of different sample size α = 0.01 
𝑋̅1 = (3.5    3.5) Sample 

size 
𝑛1 = 𝑛2 𝑛1 > 𝑛2 𝑛1 < 𝑛2 

𝑋̅2 = (3.5  3. 5) TEST 15, 15 50, 50 30, 15 200, 100 10, 20 60, 100 

S1=(
3.2 2.7
2.7 3.2

) Hotel 0.015 0.016 0.042* 0.064* 0.004 0.005 

Adebayo 0.018* 0.016 0.007 0.007 0.009 0.017* 

S2(
9.5 4
4 9.5

) 
 

Krish 0.015 0.016 0.009 0.007 0.009 0.017* 

Yao 0.018* 0.016 0.009 0.007 0.009 0.017* 

(𝑋̅1 − 𝑋̅2) = (0    0) Johan 0.015 0.016 0.009 0.007 0.009 0.017* 

 

Table 4.11, depicts that, none of the procedures maintained nominal level also at a sample 

size (50, 50) all procedures inflated with equal rate. For a sample sizes (200, 100) and       

(10, 20) all procedures deflated. For a sample size (60, 100) all procedures are not robust 

except Hotelling T2 which reverse is the case in the two mention scenarios. Adebayo and Yao 

at a sample size (15, 15) are not robust. 

Table 4.12: Type I error 

 

P=2 S1 < S2 Combination of different sample size α = 0.05 
𝑋̅1 = (3.5    3.5) Sample 

size 
𝑛1 = 𝑛2 𝑛1 > 𝑛2 𝑛1 < 𝑛2 

𝑋̅2 = (3.5  3. 5) TEST 15, 15 50, 50 30, 15 200, 100 10, 20 60, 100 

S1=(
3.2 2.7
2.7 3.2

) Hotel 0.042 0.04 0.148* 0.14* 0.01* 0.022* 

Adebayo 0.041 0.04 0.058 0.039 0.051 0.052 

S2(
9.5 4
4 9.5

) 
 

Krish 0.041 0.041 0.062 0.039 0.05 0.052 

Yao 0.041 0.04 0.066* 0.04 0.048 0.052 

(𝑋̅1 − 𝑋̅2) = (0    0) Johan 0.043 0.041 0.062 0.039 0.05 0.052 

 
Table 4.12, depicts that, Krishnamoorthy and Yao have maintained the nominal level. 

Hotelling T2 at sample sizes (30, 15), (200, 100), (10, 20), 60, (100) and Yao (30, 15) are not 

robust. In the remaining settings all procedures either deflated or inflated. 
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4.2.3 Type I Error when S1 > S2 and P=3 at both level of significance (0.01 and 0.05) 

Table 4.13: Type I error 

P=3 S1 > S2 Combination of different sample size α = 0.01 
𝑋̅1 = (10  15  20 ) Sample 

size 
𝑛1 = 𝑛2 𝑛1 > 𝑛2 𝑛1 < 𝑛2 

𝑋̅2 = (10  15  20 ) TEST 15, 15 50, 50 30, 15 200, 100 10, 20 60, 100 

S1=(
800 500 300
500 800 250
300 250 800

) 
Hotel 0.011 0.01 0*  0* 0.075* 0.052* 

Adebayo 0.01 0.01 0.009 0.005 0.011 0.012 

S2(
100 50 25
50 100 20
25 20 100

) 

 

Krish 0.01 0.01 0.009 0.005 0.01 0.012 

Yao 0.01 0.01 0.009 0.005 0.016 0.014 

(𝑋̅1 − 𝑋̅2) = (0  0  0) Johan 0.01 0.008 0.008 0.005 0.009 0.012 

 
Table 4.13, depicts that, all procedures maintained nominal level except Hotelling T2 and 

Johanson in one condition each also at a sample size (15, 15) and (50, 50) also at a sample 

size (10, 20) Krisnamoorthy maintained nominal level. Hotelling T2 at a sample sizes         

(30, 15), (200, 100), (10, 20) and (60, 100) is not robust.  

Table 4.14: Type I error 

 

P=3 S1 > S2 Combination of different sample size α = 0.05 
𝑋̅1 = (10  15  20 ) Sample 

size 
𝑛1 = 𝑛2 𝑛1 > 𝑛2 𝑛1 < 𝑛2 

𝑋̅2 = (10  15  20 ) TEST 15, 15 50, 50 30, 15 200, 100 10, 20 60, 100 

S1=(
800 500 300
500 800 250
300 250 800

) 
Hotel 0.051 0.066* 0.003* 0.003* 0.191* 0.143* 

Adebayo 0.052 0.065 0.045 0.057 0.05 0.06 

S2(
100 50 25
50 100 20
25 20 100

) 

 

Krish 0.048 0.065 0.046 0.057 0.052 0.06 

Yao 0.052 0.065 0.046 0.057 0.066* 0.06 

(𝑋̅1 − 𝑋̅2) = (0  0  0) Johan 0.047 0.059 0.046 0.057 0.052 0.058 

 
Table 4.14, depicts that, at a sample size (10, 20) Adebayos’ maintained nominal level. 

Hotelling T2 at a sample sizes (50, 50), (30, 15), (200, 100), (10, 20), (60, 100) and Yao      

(10, 20) were not robust. In the remaining settings all procedures either deflated or inflated. 
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4.2.4 Type I Error when S1 < S2 and P=3 at both level of significance (0.01 and 0.05) 

Table 4.14: Type I error 

 
P=3 S1 < S2 Combination of different sample size α = 0.01 
𝑋̅1 = (10   10   10) Sample 

size 
𝑛1 = 𝑛2 𝑛1 > 𝑛2 𝑛1 < 𝑛2 

𝑋̅2 = (10    10   10) TEST 15, 15 50, 50 30, 15 200, 100 10, 20 60, 100 

S1=(
5.5 3.2 2.5
3.2 5.5 2.1
2.5 2.1 5.5

) 
Hotel 0.021* 0.004 0.092* 0.098* 0.003* 0.00* 

Adebayo 0.02* 0.004 0.008 0.008 0.011 0.013 

S2(
95 80 70
80 95 60
70 60 95

) 

 

Krish 0.013 0.003* 0.009 0.008 0.011 0.013 

Yao 0.02* 0.004 0.011 0.009 0.012 0.013 

(𝑋̅1 − 𝑋̅2) = (0   0   0) Johan 0.011 0.003* 0.008 0.008 0.011 0.013 

 
Table 4.14, depicts that, none of the procedure maintained nominal level, and only Johanson 

robust at a sample size (15, 15) but when sample size is (50, 50) Johansons and 

Krishnamoorthy were not robust.  Hotelling T2 is not robust in all scenarios except when 

sample size are (n1=n2). 

 

Table 4.15: Type I error 

 
P=3 S1 < S2 Combination of different sample size α = 0.05 
𝑋̅1 = (10   10   10) Sample 

size 
𝑛1 = 𝑛2 𝑛1 > 𝑛2 𝑛1 < 𝑛2 

𝑋̅2 = (10    10   10) TEST 15, 15 50, 50 30, 15 200, 100 10, 20 60, 100 

S1=(
5.5 3.2 2.5
3.2 5.5 2.1
2.5 2.1 5.5

) 
Hotel 0.055 0.042 0.215* 0.204* 0.011* 0.011* 

Adebayo 0.05 0.041 0.052 0.05 0.043 0.05 

S2(
95 80 70
80 95 60
70 60 95

) 

 

Krish 0.048 0.041 0.055 0.05 0.041 0.049 

Yao 0.05 0.041 0.057 0.05 0.042 0.049 

(𝑋̅1 − 𝑋̅2) = (0   0   0) Johan 0.044 0.041 0.052 0.049 0.041 0.047 

 
Table 4.15, depicts that, at a sample sizes (15, 15) Adebayo, Yao and at a sample size      

(200, 100) Adebayo, Krishnamoorthy and Yao have maintained nominal level; also Adebayo 

(60, 100) maintained nominal level. Hotelling T2 is not robust in all scenarios except when 

sample size are (n1=n2). In the remaining settings all procedures either deflated or inflated 

within the nominal range. 
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CONCLUSION  

In a setting when variance covariance matrices S1 > S2 associated with a sample sizes          

(n1 > n2) in respective of the level of significance and P (number of variable) as depicts in 

Table 4.1, 4.2, 4.5, and 4.6, we concluded that, Adebayos’ procedure performed better but at 

a sample sizes (n1 = n2 and n1 < n2) Hotelling T2 is recommended. In a setting when variance 

covariance matrices S1 < S2, many procedures tend to have equal performance as depicts in 

Table 4.3 and 4.4; However, when  α = 0.01 under the following sample sizes                  

(200, 100) and (60, 100) all procedure have equal performance, also when α = 0.05 at  sample 

sizes (50, 50) and (200, 100) all procedures have equal power; Furthermore, Adebayo and 

Yao at a sample size (15, 15) have equal power, Krishnamoorthy and Yao at a sample sizes  

(n1 < n2) have equally power. For a setting when p=3 associated with    S1 < S2, at a sample 

sizes (n1 = n2 and n1 > n2) as depicts in 4.7 and 4.8 the use of Hotelling T2 is recommended 

and when (n1< n2) associated with a small sample size (10, 20) Adebayo performed better but 

sample size increases to (60, 100) Krishnamoorthy is recommend.  

For type I error rate where robustness and nominal level matters we found that under some 

settings none of the procedure maintained the nominal level as revealed in Table 4.11 and 

4.15. The results presented from Table 4.9 to 4.16 depicts the number of times each 

procedure maintained a nominal level: Krishnamoorthy (7), Adebayo (6), Yao (4), Johanson 

(3) and Hotelling T2 (2) times respectively. Therefore, when nominal level matters 

Krishnamoorthy came first, followed by Adebayos’, Yaos’, Johansons’ then Hotelling T2 

were recommended in the sequential order mention. 

 

FURTHER WORK 

 

We recommend that the subsequent researchers should design more complicated settings and 

conditions in which more procedures could be investigated. Also need for better extension of 

univariate form of this problem to multivariate form is seriously required, so that one may be 

able to achieve a better performing procedure under all settings.  

Furthermore, a high value of (P >= 4) and different significant level other than the ones 

considered in this research may be considered. 
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