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Abstract 

In this paper, Optimal control is applied to a Quarantine Lassa fever model developed. The controls 𝑤1, 

𝑤2 and 𝑤3 which represent Public education on lassa fever mode of transfer, use of Standard precautions 

in treatment and Environmental sanitation respectively. The existence and necessary condition for Optimal 

control of the disease were verified. The effects of these controls on the model are dipitched in graphical 

representation showing with or without controls implementation. 
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1. Introduction 

 

The virus was discovered in the year 1969 at advent three nurses from America who became 

infected in a small village Lassa, Borno State of Nigeria (Macher and Wolfe, 2007)[6]. Lassa fever 

symptoms are manifested within the first twenty-one days after the infection with severe sickness 

including important organs such as liver and other symptoms are swelling the face, muscle 

tiredness, vomiting, coughing, meningitis, and hypertension. Neurological issues such as loss of 

hearing, this can be momentary or perpetual, vibrations, and inflammation of the brain was 

explained by Omalibu, et al. (2005) [10]. 

Literature on Optimal Control Measures available for Lassa fever are few. Although some 

researchers have worked on Optimal controls models of vector-host-parasites and brought up 

fascinating models along side with various theories of the dynamics of diseases spread and have 

employed the prevention strategist known as control therapeutic which could be used to prevent 

diseases and treatment strategies use for treating diseases at a lowest price (Lashari et al., 2012[4]; 

Ozairet al., 2012[11]; Lashari et al., 2013)[5]. 

In this paper, optimal control measures of intervention strategies of Lassa ferver such as control 

measures through public education on the mode of Lassa fever spread, control measures by 

adopting proper standard precautions in treatment of Lassa fever virus and control measures by 

proper hygiene and environmental sanitation are employed. 
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2. Lassa fever Quarantine Model Formulation 

 
Mohammed et al., (2014)[8] formulated a Lassa fever comprises human population and reservoir 

population. A new model is proposed known as the Quarantined Lassa fever model. The total 

human population is 

hhhhh RQIStN =)(  (1) 

which is made up Susceptible population hS , Infected population hI , Quarantined population hQ  

and Recovered human population hR .  

The total reservoir population is 

mmm IStN =)(  (2) 

made up of Susceptible reservoir population mS  and the Infected reservoir population mI . 

Incorporating on the Quarantine model, time-dependent preventive measures 23 , ww and 1w  as 

controls to fight the spread of Lassa fever, where the parameters are environmental sanitation and 

hygiene, efforts of treatment using standard precautions and public education of the people of the 

mode of spread respectively, the model becomes: 
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3. Model Analysis 

Let an objective function be defined as: 

dtwawawaIAIASAwwwJ mhh
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where ,, 21 AA  and 3A  denote the weight constant of the susceptible humans, infected human and 

infected mastomys. In addition, the terms 
2

11wa , 
2

22wa  and 2

33wa  stand for the associated cost of 

minimization of number of Susceptible, number of the infected and the number of mastomys 

population. The preference of quadratic cost on the controls is is owned to Agusto et al., (2012)[2] 

and as used by other literature. The goal is to seek an optimal control 
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Applying the Pontryagin’s Maximum Principle (PMP) the system (3) and (4) becomes a 

minimization problem with respect to 
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                                                                         (6) 

Where i , for 1...,6=i  are adjoints/costate variables obtained from partial differentiation of the 

Hamiltonian with respect to the corresponding state variables. 

 

The Existence and the Necessary Condition of Optimal Control of Quarantine Model 

 
Theorem 1 

Consider the optimal contol problem of (4) with subject to (3) . There exist an Optimal control set 
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W for I = 1…,3 (7 ) 

Proof : 

Owing to the fact that all State variables with control parameters are non-negative, the necessary 

convexity of the objective functional in 
*

2

*

1 , ww  and *

3w  are fulfilled in this minimization 

problems. The set of all control variables Wwww ),,( *

3

*
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1  is also convex and closed by 

definition. The Optimal control is bounded which determines compactness needed for the 

existence of the Optimal. In addition, the integral in the functional (4) 
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11321 wawawaIAIASA mhh   is convex on the control set Kahuru et al. (2017)[3]. 

Necessary condition for Optimality of the Quarantine Model 

2Theorem  

Given an Optimal control 
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With the tranversality conditions 

0=)(=)(=)(=)(=)(=)( 654321 ffffff tttttt   

and the controls 
*

2

*

1 , ww  and *

3w  satisfying the Optimality conditions: 
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:Proof  

Differentiating the Hamiltonian function partially, results to differential equations 

governing the adjoint variable; hence the adjoint system can be written as 
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With the tranversality conditions 

0=)(=)(=)(=)(=)(=)( 654321 ffffff tttttt                           (13) 

On the interior of the control set, where 10  iw , for 1,2,3,=i  we have 
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Similarly 
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4. Numerical Solution 

 
In this part, numerical analysis of the quarantine Lassa fever Model is examined with study 

controls affecting the transmission dynamics. The optimality system is solved to obtained the set 

of optimal control. The system which referred to as optimality comprises of the state and adjoint 

systems is evaluated by an iterative scheme, first with the state equation with guess to for the 

controls over a period of time using Runge-Kutta scheme of order 4-5. owning to the transversality 

conditions in (11), backward forth order Runge-Kutta scheme is used to evaluate the adjoint 

equations by using current iterations, then the value from the characteristion. This process is 

repeatedly performed and stopped when the current values corresponds to the previous unknowns, 

(Agusto et. al, 2012)[2]. Using the following initial conditions and the set of weight factors 

according to (Momoh and Fügenschuh 2016)[7], 500=(0)hS , 2000=(0)mS , 10=(0)hI , 

100=(0)mI , 5=(0)hQ , 10=(0)hR  1A =60, 2A =500, 3A =60, 1a =25, 2a =20, and 3a =30. 

 

 

 

 

    Table 1: State variables and Descriptions of the Lassa fever Quarantine Virus Model 

 

 Variable Description 

ISSN 2688-8300 (Print) ISSN 2644-3368 (Online) JMSCM, Vol.2, No.2, January 2021

222 Journal of Mathematical Sciences & Computational Mathematics



mS  Susceptible Rats at a given time t. 

mI  Infected Rats at a given time t. 

hS  Susceptible humans a given time t. 

hI  Infected humans at a given time t. 

hQ  Quarantined/ isolated humans at a given time t. 

)(tRh  Number of Recovered humans at a given time t. 

 

            Table 2: The baseline Parameter values for the model analysis 

 

Parameters          Description                             Value  References 

 , Recruitment rates of infective immigrants rats and 

susceptible rats receptively 
0.4  (Momoh , 

2016)[7] 

  The progression rate from the recovered class to 

Susceptible class due to loss of immunity. 
0.012 (Abdullahi et al., 

2015)[1] 

1w  Control measures through Public Education of the mode 

spread of Lassa fever Virus 
0.5 Assumed 

2w  Control measures by adopting proper standard 

precautions in treatment of Lassa fever Virus. 
0.3 Assumed 

3w  Control measures by proper hygiene and environmental 

sanitation. 
0.3 Assumed 

  The progression rate from the infective class the 

Quarantine class 
0.0025 (Abdullahi et al., 

2015)[1] 

  Progression rate from infected class to recovered Class 

due to early treatment 
0.009 Assumed 

1  Force of infection between infected Rats and 

Susceptible human. 
0.8 (Abdullahi et al., 

2015)[1] 

2  Force of infection between Susceptible human and 

infected human. 
0.8 (Abdullahi et al., 

2015)[1] 

3  Force of infection between susceptible Rats and infected 

Rats. 
0.0714 (Abdullahi et al., 

2015)[1] 

m  Natural death rate of Rats. 0.0038 (Abdullahi et al., 

2015)[1] 

H  Natural death rate of Humans. 0.005 (Abdullahi et al., 

2015)[1] 

1  Induced death due to infection. 0.01626
 

(NCDC, 2017)[9] 

2  Induced death due to poor Medical services. 0.00321 (NCDC, 2017)[9] 

ᴧ m Recruitment rates of Humans and Rats 0.038, 

0.56 

Assumed 
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Fig. 1 Graph of Susceptible Rat population     Fig. 2 Graph of the Infected Rat Population 

 
Fig. 3 Graph of Susceptible Human Population    Fig. 4 Graph of Quarantine Human 

 

 

Fig. 5 Graph of Infected Human                Fig. 6 Graph of Recovered Human Population 

                 Fig. 1: Graph of the Susceptible Rat Population 

 

Without control strategy implemented, the rate of infection of the mastomys is astronomical as the 

graph indicated. More susceptible mastomys are infected which depleted rapidly the susceptible 
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class and make available more infected rats whcih can be a menace to the human poplulation. But 

as control is implemented, the susceptible class is steadily maintained and the reduction is due to 

the elimination of the mastomys rather than being infected. The environmental and sanitation 

control strategies implemented help to reduce the number of infected rats which in turn lead to 

reduction in the spread of the infection within human population. 

Fig. 2: Graph of the Infected Rat Population 

The graph above indicated what happens with the model with and without control strategy. The 

population of the infected rats decreases with increase in the control parameter 3w  while the 

population of the infected rats increases in the absence of no control. The more effective the control 

strategy (as 13 w ), the lesser the infected rats and the more stable the disease free equilibrium 

among the human. 

Fig. 3: Graph showing Susceptible Human Population 

The graph 3 indicated changes in susceptible human population with and without the control. 

Without control, the disease become endemic and more susceptible human are infected while with 

control, the susceptible compartment is steady. The graph without control also indicated that the 

disease can affect an entire population in less than 1 months if proper care is not taken. This 

indicated that proper and adequate caution must be taken when an infected individual (or suspected 

to be infected) is discover within the population so that the entire community can be prevented 

from the break-out of the infection. 

Fig. 4: Graph showing infected human Population 

Infected human increases without bound in the absence of control. This confirmed that the 

infection is highly infectious when nothing is done to curtail it. With the control strategy in place, 

the rate of infection becomes reduced. However, the menace still persist in the population due to 

contact with already infected individuals. Thus, there is the need to intensify the awareness about 

the spread of the infection together with quarantining the infected ones so that the disease burden 

can be lowered. 

Fig. 5: Graph showing Quarantine Human Population 

Numbers of quarantine cases for both models (with and without control) reduces due to neglect or 

other factor. It is expected that once more cases of infection is discovered, more cases should be 

quarantine to curtail the spread. However, due to improper education or attitudinal problem of 

some people, they tend to hid an infected individual from being taken to custody for treatment and 

this affect the rate of change in population of the infected as more people come into contact the 

disease. 

Fig. 6: Graph showing Recovered Human population 
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The treatment compartment increased due to the fact that effective treatment exist for this deadly 

infection. However, the number of recovered individual is lower compared with the number of 

infected, which means that some are avoiding going for treatment due to the fact that the cost is 

high for the masses (the most affected people). Thus, there’s the need for government to intervene 

in improving the standard of living of the masses so that they can be well equipped to take care of 

themselves and environment. 

5. Conclusion 

In this paper, we presented a Lassa fever quarantine model using a deterministic system of 

differential equations and established the existence and necessary condition for optimal control of 

the disease. 𝑤1, 𝑤2 and 𝑤3 represented public education on the mode of Lassa fever spread, 

adopting proper standard precautions in treatment of Lassa fever virus and proper hygiene with 

environmental sanitation as control measures. The effects of these control strategies on model were 

shown in graphical representation.  
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