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Abstract                                                                                                                    

It will be shown that finding solutions from some integro-differential equation under Dirichlet conditions 

is equivalent to solving an integral equation, which can be treated as a generalized two-dimensional moment 

problem over a domain  𝐸 = {(𝑥, 𝑡), 0 < 𝑥 < 𝐿;  𝑡 > 0} . We will see that an approximate solution of the 

equation integro-differential can be found using the techniques of generalized inverse moments problem 

and bounds for the error of the estimated solution. First the problem is reduced to solving a hyperbolic or 

parabolic partial derivative equation considering the unknown source. The method consists of two steps. In 

each one an integral equation is solved numerically using the two-dimensional inverse moment problem 

techniques. 

We illustrate the different cases with examples. 

Keywords: integro-differential equation, integral equations, generalized moment problem.                                                                                                                                                                                                           

INTRODUCTION 

Integral and integro-differential equations are found in numerous applications in different fields of 

science and engineering. For instance, in the mathematical modelling of spatio temporal 

developments, epidemic modelling and various biological and physical problems. Analytical 

solutions of integral and integro-differential equations, however, either do not exist or it is often 

hard to find. It is precisely due to this fact that several numerical methods have been developed for 

finding approximate solutions of integral and integro-differential equations. 

The issue of solving different types of integro-differential equations has been widely discussed in 

the literature and a great variety of methods have been proposed for its numerical resolution. 

Biorthogonal spline wavelet method is proposed for the numerical solution of Linear and nonlinear 

integral and integro-differential equations in [1]. In [2] it is proposed a new hybrid method to find 
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analytical approximate or exact solutions for various many linear and nonlinear integro – 

differential equations. In [3] the paper presents an iterative technique based on homotopy analysis 

method for solving system of Volterra integro-differential equations. The technique provides us 

series solutions to the problems which are combined with the diagonal Padé approximants and 

Laplace transform to obtain closed-form solutions. In [4] the paper is concerned with modification 

of the Adomian Decomposition Method for solving linear and non-linear Volterra and Volterra-

Fredholm Integro-Differential equations. In [5] this paper, we introduced the modified differential 

transform which is a modified version of a two-dimensional differential transform method. In [6] 

different classes of integral and integro-differential equations are solved using a modified 

differential transform method. This proposed technique is based on differential transform method 

(DTM), Laplace transform (LT) procedure and Padé approximants (PA).  In [7] a new modification 

of homotopy perturbation method was proposed to find analytical solution of high-order integro-

differential equations. The Modification process yields the Taylor series of the exact solution. 

Canonical polynomials are used as basis function equations. The Modification process yields the 

Taylor series of the exact solution. Canonical polynomials are used as basis function. [8] presents 

an effective hybrid semi-analytical method for dealing with the integro-differential equations. This 

new technique is based on the combining of the Kharrat-Toma integral transform with the 

homotopy perturbation method to find the exact or approximate solutions of both linear and 

nonlinear models. In [9] a combination between a Sumudu transform (ST) and the homotopy 

perturbation method (HPM) is presented. Other recent works are [10, 11], to name a few. 

Some study inverse boundary problems for one dimensional linear integro-differential equation of 

the Gurtin – Pipkin type with the Dirichlet to Neumann map as the inverse data [12]. 

Other jobs study the stability of solutions for a heat equation with memory [13]. 

In [14] study decay properties in energy norm for solutions of a class of partial differential 

equations with memory are studied by means of frequency domain methods. 

In [15] it is tested that the one-dimensional heat equation with memory cannot be controlled to rest 

for large classes of memory kernels and controls. The approach is based on the application of the 

theory of interpolation in Paley–Wiener spaces. 

In this work we want to find 𝑤(𝑥, 𝑡)  such that 

𝑤𝑡(𝑥, 𝑡) = ∫ 𝑘(𝑡 − 𝑠)
𝑡

0

𝑤𝑥𝑥(𝑥, 𝑠)𝑑𝑠 + 𝑓(𝑥, 𝑡) . 

about a domain 𝐸 = {(𝑥, 𝑡), 0 < 𝑥 < 𝐿;  𝑡 > 0} 

with conditions 

𝑤(𝑥, 0) = ℎ1(𝑥);         𝑤(0, 𝑡) = 𝑘1(𝑡);       ;         𝑤(𝐿, 𝑡) = 𝑘2(𝑡).  
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where 𝑘(𝑡)  has continuous derivate on 𝑥 = 0, the value of  𝑘(0) is known, 𝑓(𝑥, 𝑡) known and 

derivative with respect to t continuous, using the problem generalized moments techniques. 

The objective of this work is to show that we can solve the problem using the techniques of inverse 

moments problem. We focus the study on the numerical approximation. It is not the objetive to 

compare with other methods. 

 

The generalized moments problem [16, 17, 18], is to find a function 𝑓(𝑥) about a domain  Ω ⊂

 𝑅𝑑  that satisfies the sequence of equations 

                                                         𝜇𝑖 = ∫ 𝑔𝑖Ω
(𝑥)𝑓(𝑥)𝑑𝑥      𝑖𝜖𝑁 − − − − − − − − − −   (1) 

Where N is the set of the natural numbers, (𝑔𝑖(𝑥)) is a given sequence of functions in 𝐿2(Ω) 

linearly independent known and the succession of real numbers {𝜇𝑖}𝑖𝜖𝑁  are known data. The 

problem of Hausdorff moments [17,18] , is to find a function 𝑓(𝑥) in (𝑎, 𝑏) such that 

𝜇𝑖 = ∫ 𝑥𝑖
𝑏

a

𝑓(𝑥)𝑑𝑥      𝑖𝜖𝑁 . 

In this case 𝑔𝑖(𝑥) = 𝑥𝑖 with i belonging to set N.  

If the integration interval is (0, ∞) we have the problem of Stieltjes moments; if the integration 

interval is (−∞, ∞) we have the problem of Hamburger moments [16,17]. 

The moments problem is an ill-conditioned problem in the sense that there may be no solution 

and if there is no continuous dependence on the given data [16,17,18]. There are several methods 

to build regularized solutions. One of them is the truncated expansion method [17].  

This method is to approximate  (1)  with the finite moments problem   

                                                       𝜇𝑖 = ∫ 𝑔𝑖Ω
(𝑥)𝑓(𝑥)𝑑𝑥      𝑖 = 1,2, … , 𝑛. − − − − − − −  (2) 

where it is considered as approximate solution of   𝑓(𝑥)  to 𝑝𝑛(𝑥) = ∑ 𝜆𝑖
𝑛
𝑖=0 𝜙𝑖(𝑥) , and the 

functions {𝜙𝑖(𝑥)}𝑖=1,..,𝑛  result of orthonormalize 〈𝑔1, 𝑔2, … , 𝑔𝑛〉  being 𝜆𝑖 the  coefficients based 

on the data 𝜇𝑖 .  In the subspace generated by 〈𝑔1, 𝑔2, … , 𝑔𝑛〉 the solution is stable. If 𝑛 𝜖 𝑁 is 

chosen in an appropriate way then the solution of  (2) it approaches the solution of the problem 

(1).  

In the case where the data 𝜇𝑖   are inaccurate the convergence theorems should be applied and 

error estimates for the regularized solution (pages 19 - 30 of [17]). 

ARTICLE ORGANIZATION 

To find 𝑤(𝑥, 𝑡)  such that 
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𝑤𝑡(𝑥, 𝑡) = ∫ 𝑘(𝑡 − 𝑠)
𝑡

0

𝑤𝑥𝑥(𝑥, 𝑠)𝑑𝑠 + 𝑓(𝑥, 𝑡) . 

about a domain 𝐸 = {(𝑥, 𝑡), 0 < 𝑥 < 𝐿;  𝑡 > 0} 

with conditions 

𝑤(𝑥, 0) = ℎ1(𝑥);         𝑤(0, 𝑡) = 𝑘1(𝑡);       ;         𝑤(𝐿, 𝑡) = 𝑘2(𝑡).  

we will do it in two steps. 

The next section describes the first step.  

Then it is explained how the generalized moment problem is solved with the truncated expansion 

method. 

The section that follows explains the second step. 

Finally the numerical example and the conclusions. 

RESOLUTION OF THE INTEGRO-DIFFERENTIAL EQUATION – FIRST STEP 

We want to find 𝑤(𝑥, 𝑡) such that 

𝑤𝑡(𝑥, 𝑡) = ∫ 𝑘(𝑡 − 𝑠)
𝑡

0

𝑤𝑥𝑥(𝑥, 𝑠)𝑑𝑠 + 𝑓(𝑥, 𝑡). − − − − − − −(3) 

about a domain 𝐸 = {(𝑥, 𝑡), 0 < 𝑥 < 𝐿;  𝑡 > 0}. 

We derive with respect to t:  

𝑤𝑡𝑡(𝑥, 𝑡) = ∫ 𝑘𝑡(𝑡 − 𝑠)
𝑡

0

𝑤𝑥𝑥(𝑥, 𝑠)𝑑𝑠 + 𝑘(𝑡 − 𝑡)𝑤𝑥𝑥(𝑥, 𝑡) + 𝑓𝑡(𝑥, 𝑡). 

Then 

𝑤𝑡𝑡(𝑥, 𝑡) − 𝑘(0)𝑤𝑥𝑥(𝑥, 𝑡) = ∫ 𝑘𝑡(𝑡 − 𝑠)
𝑡

0

𝑤𝑥𝑥(𝑥, 𝑠)𝑑𝑠 + 𝑓𝑡(𝑥, 𝑡). 

We considerer 

𝑤𝑡𝑡(𝑥, 𝑡) − 𝑘(0)𝑤𝑥𝑥(𝑥, 𝑡) = 𝐺(𝑥, 𝑡). − − − − − − (4) 

We can solve (4) as a Klein-Gordon equation with Dirichlet conditions where 𝐺(𝑥, 𝑡) is unknown. 

We consider as auxiliary function  

𝑢(𝑚, 𝑟, 𝑥, 𝑡) = 𝑒−𝑚(𝑥+1)𝑒−𝑟(𝑡+1) . 

We write 𝑘 = 𝑘(0) 

and 
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𝑤(𝑥, 0) = ℎ1(𝑥);         𝑤(0, 𝑡) = 𝑘1(𝑡);       ;         𝑤(𝐿, 𝑡) = 𝑘2(𝑡)  . 

We define the vector field 

𝐹∗ = (𝐹1(𝑤), 𝐹2(𝑤)) = (−𝑘𝑤𝑥 , 𝑤). 

As 𝑢 𝑑𝑖𝑣(𝐹∗) = 𝑢 𝐺(𝑥, 𝑡) we have to: 

∬ 𝑢
𝐸

𝑑𝑖𝑣(𝐹∗)𝑑𝐴 = ∬ 𝑢
𝐸

𝐺(𝑥, 𝑡)𝑑𝐴. 

Moreover, as  𝑢 𝑑𝑖𝑣(𝐹∗) = 𝑑𝑖𝑣(𝑢 𝐹∗) − 𝐹∗. ∇ 𝑢 , then 

∬ 𝑢
𝐸

𝑑𝑖𝑣(𝐹∗)𝑑𝐴 =  ∬ 𝑑𝑖𝑣(𝑢 𝐹∗)𝑑𝐴
𝐸

− ∬ 𝐹∗

𝐸

. ∇𝑢 𝑑𝐴. − − − − − − 5 

where ∇𝑢 = (𝑢𝑥 , 𝑢𝑡) . 

Besides that 

∬ 𝑑𝑖𝑣(𝑢 𝐹∗)𝑑𝐴
𝐸

= ∬ (−𝑘 𝑢 𝑤𝑥)𝑥
𝐸

+  ( 𝑢 𝑤𝑡)𝑡𝑑𝐴 = ______________6 

∬𝑢
𝐸

𝑑𝑖𝑣(𝐹∗)𝑑𝐴 + ∬ (−𝑘 𝑢𝑥𝑤𝑥 + 𝑢𝑡𝑤𝑡)𝑑𝐴
𝐸

. 

Then from (5) and (6): 

∬ (− 𝑘 𝑢𝑥𝑤𝑥 +  𝑢𝑡𝑤𝑡)𝑑𝐴
𝐸

= ∬ 𝐹∗

𝐸

. ∇𝑢 𝑑𝐴 . − − − − − − − − 7 

On the other hand, it can be proven, after several calculations that, integrating by parts: 

∬ 𝐹∗

𝐸

. ∇𝑢 𝑑𝐴 =  𝐴(𝑚, 𝑟) + 𝐵(𝑚, 𝑟) − ∬ 𝑢
𝐸

𝑤 (−𝑘 𝑚2 + 𝑟2)𝑑𝐴 = 𝜑(𝑚, 𝑟) − − − −8 

with 

𝐴(𝑚, 𝑟) = ∫ (−𝑚)(−𝑘)𝑢(𝑚, 𝑟, 𝐿, 𝑡)𝑤(𝐿, 𝑡)
∞

0

−  (−𝑚)(−𝑘)𝑢(𝑚, 𝑟, 0, 𝑡)𝑤(0, 𝑡)𝑑𝑡 

𝐵(𝑚, 𝑟) = ∫ − (−𝑟)𝑢(𝑚, 𝑟, 𝑥, 0)𝑤(𝑥, 0)𝑑𝑥
𝐿

0

 . 

If √𝑘 𝑚 = 𝑟, instead of (7) and (8) 
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∬(− 𝑘)(− 𝑚)𝑢
𝐸

𝑤𝑥 − √𝑘 𝑚 𝑤𝑡𝑢𝑑𝐴 = 𝜑(𝑚, √𝑘 𝑚) . 

 ∴    ∬ 𝑢(𝑘𝑤𝑥 − √𝑘  𝑤𝑡)𝑑𝐴
𝐸

=
𝜑(𝑚, √𝑘 𝑚)

𝑚
. 

with 

𝜑(𝑚, √𝑘 𝑚)

𝑚
= ∫ 𝑘

∞

0

𝑢(𝑚, √𝑘 𝑚, 𝐿, 𝑡)𝑤(𝐿, 𝑡) − 𝑘 𝑢(𝑚, , √𝑘 𝑚, 0, 𝑡)𝑤(0, 𝑡)𝑑𝑡 + 

+ ∫ 𝑢(𝑚, √𝑘 𝑚, 𝑥, 0)√𝑘
𝐿

0

 𝑤(𝑥, 0)𝑑𝑥  . 

We note  𝜑1(𝑚) =
𝜑(𝑚,√𝑘 𝑚)

𝑚
 , then 

∬ 𝑢(𝑘𝑤𝑥 − √𝑘  𝑤𝑡)𝑑𝐴
𝐸

= 𝜑1(𝑚) . − − − − − − − − −9 

To solve this integral equation we take a base  𝜓𝑖(𝑚) = 𝑚𝑖𝑒−𝑚       𝑖 = 0,1,2, . . . , 𝑛 

Then we multiply both members of (9) by 𝜓𝑖(𝑚) = 𝑚𝑖𝑒−𝑚  and we integrate with respect to m, 

we obtain 

∬ 𝐻𝑖(𝑥, 𝑡)(𝑘𝑤𝑥 − √𝑘 𝑤𝑡)𝑑𝐴
𝐸

= ∫ 𝜑1

∞

0

(𝑚)𝜓𝑖(𝑚)𝑑𝑚 = 𝜇𝑖      𝑖 = 0,1,2, … , 𝑛 . − − − − −10 

where 𝐻𝑖(𝑥, 𝑡) = ∫ 𝑢(𝑚,
∞

0
√𝑘 𝑚, 𝑥, 𝑡)𝜓𝑖(𝑚)𝑑𝑚. 

We can interpret (10) as a generalized two-dimensional moment problem. We solve it numerically 

with the truncated expansion method and we found an approximation 𝑝𝑛  (𝑥, 𝑡) for 𝑘𝑤𝑥 − √𝑘  𝑤𝑡 . 

SOLUTION OF THE GENERALIZED MOMENTS PROBLEM 

We can apply the detailed truncated expansion method in [18] and generalized in [15] and [19] to 

find an approximation 𝑝𝑛 (𝑥, 𝑡) of 𝑘𝑤𝑥 − √𝑘  𝑤𝑡 for the corresponding finite problem with 𝑖 =

0,1,2, … , 𝑛 where n is the number of moments 𝜇𝑖 .  We consider the basis 𝜙𝑖(𝑥, 𝑡) 𝑖 = 0,1,2, … , 𝑛 

obtained by applying the Gram-Schmidt orthonormalization process on 𝐻𝑖(𝑥, 𝑡)  𝑖 = 0,1,2, … , 𝑛. 

We approximate the solution 𝑘𝑤𝑥 − √𝑘  𝑤𝑡 with [18] and generalized in [19] and [20]: 

               𝑝𝑛(𝑥, 𝑡) = ∑ 𝜆𝑖𝜙𝑖(𝑥, 𝑡)      where   𝜆𝑖 = ∑ 𝐶𝑖𝑗
𝑖
𝑗=0  𝜇𝑗      i = 0,1,2, … , 𝑛 .𝑛

𝑖=0   

And the coefficients 𝐶𝑖𝑗  verify 
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𝐶𝑖𝑗 = (∑(−1)
〈𝐻𝑖(𝑥, 𝑡)|𝜙𝑘(𝑥, 𝑡)〉

‖𝜙𝑘(𝑥, 𝑡)‖2

𝑖−1

𝑘=𝑗

𝐶𝑘𝑗) . ‖𝜙𝑖(𝑥, 𝑡)‖−1   1 < 𝑖 ≤ 𝑛 ; 1 ≤ 𝑗 < 𝑖 . 

The terms of the diagonal are ‖𝜙𝑖(𝑥, 𝑡)‖−1  𝑖 = 0,1, … , 𝑛 . 

The proof of the following theorem is in [20,21]. In [21]  the demonstration is made for 𝑏2 finite. 

If 𝑏2 = ∞ instead of taking the Legendre polynomials we take the Laguerre polynomials. En [22]  

the demonstration is made for the one-dimensional case. 

This Theorem gives a measure about the accuracy of the approximation. 

Theorem 

Sea {𝜇𝑖}𝑖=0
𝑛   be a set of real numbers and suppose that 𝑓(𝑥, 𝑡) 𝜖 𝐿2((𝑎1, 𝑏1) × (𝑎2, 𝑏2)) for two 

positive numbers 𝜀 and M verify: 

          ∑ |∬ 𝐻𝑖
𝐸

(𝑥, 𝑡)𝑓(𝑥, 𝑡)𝑑𝑡𝑑𝑥 − 𝜇𝑖|

2

≤ 𝜀2         .

𝑛

𝑖=0

 

   

                                                        ∬ (𝑥
𝐸

𝑓𝑥
2 + 𝑡 𝑓𝑡

2 ) 𝐸𝑥𝑝[𝑥 + 𝑡]𝑑𝑡𝑑𝑥 ≤ 𝑀2  .     

 

then 

∫ ∫ |𝑓(𝑥, 𝑡)|2
∞

𝑎2

𝑏1

𝑎1

𝑑𝑡𝑑𝑥 ≤ 𝑚𝑖𝑛𝑖 {‖𝐶𝑇𝐶‖𝜀2 +
1

8(𝑛 + 1)2
𝑀2; 𝑖 = 0,1, … , 𝑛} 

and 
 

                                     ∫ ∫ |𝑓(𝑥, 𝑡) − 𝑝𝑛(𝑥, 𝑡)|2∞

𝑎2

𝑏1

𝑎1
𝑑𝑡𝑑𝑥 ≤ ‖𝐶𝑇𝐶‖𝜀2 +

1

8(𝑛+1)2 𝑀2. 

 

And it must be fulfilled that 
 

                                           𝑡𝑖𝑓(𝑥, 𝑡) → 0     si     𝑡 → ∞      para todo    𝑖 ∈ 𝑁 .▪ 

 

RESOLUTION OF THE INTEGRO-DIFFERENTIAL EQUATION – SECOND STEP 

So we have an equation in first order partial derivatives of the form 

𝑘𝑤𝑥(𝑥, 𝑡) − √𝑘𝑤𝑡(𝑥, 𝑡) = 𝑝𝑛(𝑥, 𝑡) 

that is, it can be written as 

𝐴1(𝑥, 𝑡)𝑤𝑥(𝑥, 𝑡) + 𝐴2(𝑥, 𝑡)𝑤𝑡(𝑥, 𝑡) = 𝑝𝑛(𝑥, 𝑡) . 
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where  𝐴1(𝑥, 𝑡) = 𝑘  and 𝐴2(𝑥, 𝑡) = −√𝑘 

It is resolved as in [21], that is, we can prove that solving this equation is equivalent to solving the 

integral equation 

∫ ∫ 𝐾(𝑚, 𝑟, 𝑥, 𝑡)𝑤(𝑥, 𝑡)𝑑𝑡𝑑𝑥
∞

0

𝐿

0

= 𝜑2(𝑚, 𝑟). − − − − − − − − 11 

with 𝐾(𝑚, 𝑟, 𝑥, 𝑡) = 𝑢(𝑚, 𝑟, 𝑥, 𝑡) (−𝑚1𝑘(𝑚 + 1) + 𝑚2√𝑘(𝑟 + 1)) 

where now it is taken as an auxiliary function 

𝑢(𝑚, 𝑟, 𝑥, 𝑡) = 𝑒−𝑚1(𝑚+1)(𝑥+1)𝑒−𝑚2(𝑟+1)(𝑡+1) . 

The values of  𝑚1 and 𝑚2  are chosen in a convenient way to avoid discontinuities, and 

𝜑2(𝑚, 𝑟) = ∫ 𝑢(𝑚, 𝑟, 𝑥, 0)√𝑘
𝐿

0

𝑤(𝑥, 0)𝑑𝑥 + 

+ ∫ 𝑢(𝑚, 𝑟, 𝐿, 𝑡)𝑘
∞

0

𝑤(𝐿, 𝑡) − 𝑢(𝑚, 𝑟, 0, 𝑡)𝑘 𝑤(0, 𝑡)𝑑𝑡 −  ∫ ∫ 𝑝𝑛(𝑥, 𝑡)𝑢𝑑𝑥𝑑𝑡
𝐿

0

∞

0

 . 

 

Again we take a base: 

𝜓𝑖𝑗(𝑚, 𝑟) = 𝑚𝑖𝑟𝑗𝑒−(𝑚+𝑟)       𝑖 = 0,1,2, . . . , 𝑛1       𝑗 = 0,1,2, . . , 𝑛2 . 

And we multiply both members of (11) by 𝜓𝑖𝑗(𝑚, 𝑟) and we integrate with respect to m and r. 

We have then the generalized moments problem 

∫ ∫ 𝑤(𝑥, 𝑡)𝐻𝑖(𝑥, 𝑡)  𝑑𝑡𝑑𝑥
∞

0

𝐿

0

= 𝜇𝑖𝑗  

where 

𝜇{𝑖𝑗} = ∫ ∫ 𝜑2(𝑚, 𝑟)𝜓𝑖𝑗

∞

0

{𝐿}

{0}

(𝑚, 𝑟)𝑑𝑚𝑑𝑟 . 

𝐻𝑖𝑗(𝑥, 𝑡) = ∫ ∫ 𝐾(𝑚, 𝑟, 𝑥, 𝑡)𝜓𝑖𝑗(𝑚, 𝑟)𝑑𝑚𝑑𝑟
∞

0

𝐿

0

 . 

We apply the truncated expansion method and find a numerical approximation for 𝑤(𝑥, 𝑡). 

We can solve in an analogous way the equations 
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𝑤𝑡𝑡 =  𝑎𝑤𝑥𝑥 + ∫ 𝑘(𝑡 − 𝑠)𝑤𝑥𝑥

𝑡

0

(𝑥, 𝑠)𝑑𝑠 + 𝑓(𝑥, 𝑡) − − − − − − − 12 

and 

𝑤𝑡 =  𝑤𝑥𝑥 + ∫ 𝑘(𝑡 − 𝑠)𝑤𝑥𝑥

𝑡

0

(𝑥, 𝑠)𝑑𝑠 + 𝑓(𝑥, 𝑡) − − − − − − − 13 

In both cases the domain is  𝐸 = {(𝑥, 𝑡), 0 < 𝑥 < 𝐿;  𝑡 > 0} with Dirichlet conditions. 

If (12) the equation would be solved  

                                                                    𝑤𝑡𝑡 − 𝑎𝑤𝑥𝑥 = 𝐺(𝑥, 𝑡), 

 if (13) the equation would be solved 

                                                                      𝑤𝑡𝑡 − 𝑤𝑥𝑥 = 𝐺(𝑥, 𝑡) . 

with 𝐺(𝑥, 𝑡) = ∫ 𝑘(𝑡 − 𝑠)𝑤𝑥𝑥(𝑥, 𝑠)𝑑𝑠
𝑡

0
+ 𝑓(𝑥, 𝑡)  where 𝐺(𝑥, 𝑡) unknown. 

This last case was resolved in [23]. 

 

NUMERICAL EXAMPLE: 

We consider the equation 

𝑤𝑡 =  ∫ 𝑐𝑜𝑠(𝑡 − 𝑠)𝑤𝑥𝑥

𝑡

0

(𝑥, 𝑠)𝑑𝑠 −
1

5
 𝑒−1−𝑥−2𝑡(8 + 2𝑒2𝑡 cos(𝑡) + 𝑒2𝑡sin (𝑡)) 

in  (0,3) × (0, ∞) .  

Conditions: 

𝑤(0, 𝑡) = 𝑒−2𝑡−1         𝑤(3, 𝑡) = 𝑒−4−2𝑡                𝑤(𝑥, 0) = 𝑒−𝑥−1 . 

The solution is: 𝑤(𝑥, 𝑡) = 𝑒−2𝑡−1−𝑥     

For the first step we take 𝑛 = 5 moments and we approximate 𝑤𝑥(𝑥, 𝑡) − 𝑤𝑡(𝑥, 𝑡) = 𝐺1(𝑥, 𝑡)  . 

with accuracy ∫ ∫ (𝑝15(𝑥, 𝑡) − 𝐺1(𝑥, 𝑡))
∞

0

23

0
= 0.0324621. 

In the Fig. 1 we show 𝑝15(𝑥, 𝑡) and 𝐺1(𝑥, 𝑡)overlapping. 

 

ISSN 2688-8300 (Print) ISSN 2644-3368 (Online) JMSCM, Vol.3, No.1, October, 2021

9 Journal of Mathematical Sciences & Computational Mathematics



                              

                                                   Fig. 1   𝑝15(𝑥, 𝑡) and 𝐺1(𝑥, 𝑡) 

For the second step we take  𝑚1 = 𝑚2=1. We also consider 𝑛1 = 3  and 𝑛2 = 2  , that is 6 

moments. 

We approximate 𝑤(𝑥, 𝑡)  with accuracy    ∫ ∫ (𝑝26(𝑥, 𝑡) − 𝑤(𝑥, 𝑡))
∞

0

23

0
= 0.0135942. 

In the Fig. 2 we show 𝑝26(𝑥, 𝑡) and 𝑤(𝑥, 𝑡)  overlapping. 

                                  

                                           Fig. 2   𝑝26(𝑥, 𝑡) and 𝑤(𝑥, 𝑡) 

 

CONCLUSION 

An equation integro-differential of the form 𝑤𝑡(𝑥, 𝑡) = ∫ 𝑘(𝑡 − 𝑠)
𝑡

0
𝑤𝑥𝑥(𝑥, 𝑠)𝑑𝑠 + 𝑓(𝑥, 𝑡) where 

the unknown function 𝑤(𝑥, 𝑡)  is defined in (0, 𝐿) × (0, ∞)  under the Dirichlet conditions can be 

solved numerically by applying inverse problem techniques of moments in two steps considering 

the equation in partial derivatives 𝑤𝑡𝑡(𝑥, 𝑡) − 𝑘(0)𝑤𝑥𝑥(𝑥, 𝑡) = 𝐺(𝑥, 𝑡) where 𝑘(0) is known and 

𝐺(𝑥, 𝑡) unknown. 

1. First we consider the integral equation 
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∬ 𝑢(𝑘𝑤𝑥 − √𝑘  𝑤𝑡)𝑑𝐴
𝐸

= 𝜑1(𝑚) . 

we can solve it numerically as a inverse moments problem, and we get an approximate 

solution for 𝑘𝑤𝑥(𝑥, 𝑡) − √𝑘  𝑤𝑡(𝑥, 𝑡). 

 

2. as a second step we consider the integral equation 

∫ ∫ 𝐾(𝑚, 𝑟, 𝑥, 𝑡)𝑤(𝑥, 𝑡)𝑑𝑡𝑑𝑥
∞

0

𝐿

0

= 𝜑2(𝑚, 𝑟) . 

and again it can be solved numerically by applying inverse moments problem techniques, 

and we get an approximate solution for 𝑤(𝑥, 𝑡). 

We can solve in an analogous way the equations 𝑤𝑡𝑡 =  𝑎𝑤𝑥𝑥 + ∫ 𝑘(𝑡 − 𝑠)𝑤𝑥𝑥
𝑡

0
(𝑥, 𝑠)𝑑𝑠 + 𝑓(𝑥, 𝑡) 

and  𝑤𝑡 =  𝑤𝑥𝑥 + ∫ 𝑘(𝑡 − 𝑠)𝑤𝑥𝑥
𝑡

0
(𝑥, 𝑠)𝑑𝑠 + 𝑓(𝑥, 𝑡).  

In both cases the domain is (0, 𝐿) × (0, ∞)  under the Dirichlet conditions. 
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