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Abstract

Bhutan has now increasingly become a popular destination for many international tourists. Tourism in
Bhutan is considered as one of the largest foreign earning industries. The number of tourist inflow in the
country is increasing year by year. Forecasting is very necessary for administration and tourist agent for
creating awareness and planning for the future development. It can also predict the future trends as
accurately as possible and helps in staying one step ahead of the competition. This study aims to apply
mathematical model for forecasting monthly tourist inflow from Malaysia, Singapore, China, USA,
England, France, Germany, Thailand, Australia and Japan to Bhutan. The Box-Jenkins model is used to
identify the parameters of Autoregressive integrated moving average (ARIMA) model of monthly tourist
visited data of above mentioned countries in the period 2011-2015 obtained from Tourism Council of
Bhutan. An Akaike’s Information Criterion, Schwartz’s Bayesian Criterion and estimate variance of white
noise are used throughout to test for the identification of best fit model. Further, the periodogram analysis
was used to confirm the seasonal period of the model. The results showed ARIMA model for Thai,
Chinese, Malaysian and Japanese, while seasonal ARIMA for American, Australian, British, French,
Singaporean and German. Further, seasonal ARIMA model was obtained as the best fit model for the
overall data. These models are illustrated and could possibly forecast the monthly tourist inflow of one
year ahead with acceptable accuracy.

Keywords: Akaike’s information criterion, Box-Jenkins model, Schwartz’s Bayesian criterion, variance

of white noise

1. Introduction

Bhutan's tourism industry began in 1974. It was introduced with the primary objective of
generating revenue, especially foreign exchange; publicizing the country's unique culture and
traditions to the outside world, and to contribute to the country's socio-economic development.
Bhutan has now increasingly become a popular destination for many international tourists (Dorji,

2014). The number of tourist inflow in the country is increasing year by year. So forecasting is
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very necessary for administration and tourist agent for creating awareness and planning for the
future development (Honey & Gilpin, 2009). It can also predict the future trends as accurately as
possible and helps in staying one step ahead of the competition (Singha, 2012).

In spite of the great importance of tourism in Bhutan’s economy, there is an incomprehensible
lack of systematic and up to date quantitative research oriented on analyzing the core
determinant and patterns of the visitors from different countries in Bhutan. Therefore it is very
important to analyze the determinant and the core pattern tourist inflow in Bhutan. Such a study
can be used in formulation of future macroeconomic development strategies, pricing strategies
and tourism routing strategies in Bhutan as a one of the most popular destination in the world
(Mahmood & Ali, 2016).

Given the importance of the tourism industry to Bhutan it is essential to generate the accurate
forecast of the future trends of tourist flows from the major origin countries. This research paper
aimed is one-period-ahead forecasts of international tourism demand for Bhutan, and to seek
provide the best model for forecasting international tourist arrivals to Bhutan for these periods
using Box Jenkins Methods with non-seasonal and seasonal modification.The advantages ofBox
Jenkins Methodology involve selecting a great quantum of information from the analyzed

empirical time series, using a small number of parameters (Nanthakumar & Ibrahim, 2010).

2. Data and methodology

2.1 Data

For the study, we used the monthly tourist inflow series includes data from top ten market
sources that is Malaysia, Singapore, China, America, Australia, USA, France, Thailand,
Germany and Japan during 2011-2015 obtained from Tourism Council of Bhutan. (Tourism
Council of Bhutan, n.d) The series consist of 60 observations where first 54 sample observations
are analyzed by using the Box-Jenkins method and the rest 6 observations out of sample are used
to compare the forecast in all the nationalities.

2.2 Methodology

In this study, the Box-Jenkins model is used to analyze tourist inflow series which include data
from top ten market sources that is Malaysia, Singapore, China, America, Australia, USA,
France, Thailand, Germany, Japan and total tourist visitedduring 2011 — 2015.The Box-Jenkins
method consists of following steps. (Singh, 2013).
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The first step is to identify the all tentative model. Identification consists of specifying
appropriate AR, MA or ARMA and order of the model. The identification is done by looking at
the ACF and PACF of the interested stationary series.

The second step is to estimate the parameters of the model. Parameters of models can be
estimated by least-square method. The estimation of parameter usually requires more
complicated iteration procedure but the computer programming automatically generate it.

The third step is to check the model. This step is also called diagnostic checking or verification.

Two important elements in checking are to ensure that the residuals of the model are random and
white noise i.e. uncorrelated and constant variance &az, and also to make sure that the estimated

parameters are strictly significant (Newbold, 2013).

The fourth step is to elect the best model from the various ARIMA models which might be
suitable for the series. Thus we use Akaike’s Information Criteria (AIC) and Schwarz’s Bayesian
Criterion (SBC) for model selection to find the best model of the monthly tourist inflow in
Bhutan.

2.2.1 ARIMA model

If the process is not stationary, we have to take differencing term (1—B)Y in the process. When
model ARMA (p, g) model on a time series which has been differenced d times we call this an
ARIMA (p, d, q) model [4].Thus the general ARIMA (p, d, g) written using backshift operator

as:

f,(B)1- B)! X, =q,+q,(B)q,

where ¢, (B) :1—¢lB—¢sz —-~~—¢po is the stationary AR operator,
d,(B)=1-6B —0282 —- -~—¢9qu is the invertible MA operator

and 6, = u(1—¢ — ¢, —---—¢,) which is known as deterministic trend term.( Ekpenyong, 2016)

2.2.2 Seasonal ARIMA

The Seasonal ARIMA model includes both seasonal and non-seasonal factors in multiplicative
model called ARIMA (p,d,q) X (P,Q, D) where p is non-seasonal AR order, d is non-seasonal
differencing,q is non-seasonal MA order,P is seasonal AR order,D is seasonal differencing,Q is

seasonal MA orderands is seasonal periodwhere the general equation of the model is
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®; (B%)4, (B)(1-B)! (1-B°)° X, =6,(B)®q (B)°a,

(Baldigara & Mumula, 2015) where ¢p(B) Is the non-seasonal autoregression component of order
P, (I)p(BS) is the seasonal autoregression of order s, X, is the current value of the time series
examined, B is the backward shift operator Xt(Bi) =X, A= B)OI Is non-seasonal difference
term, (1— BS)D is the seasonal difference term, 6'q (B) is the non-seasonal moving average of order

gand @Q(B)S is the seasonal moving average of order Q (1990, p. 106)

2.2.3 Periodogram analysis
To confirm the seasonality, we perform periodogram analysis. Periodogram help us to find the
hidden periodicities. If model contains a single periodic component at frequency w, the

periodogram I (@) at Fourier frequency ), closest to wwill be maximum. Thus the maximum

periodogram ordinate will be
1
I )(60(1)) = max{l (0&)}
where @, is to indicate the maximum periodogram ordinate of the Fourier frequency.

Under the null hypothesis H,, including a period in a time series, an exact test statistic of

| (@) is known as Fisher’s test which is based on the equation below

~ 19ay)
i@

3. Results

The monthly tourist visited from top ten market source during 2011 — 2015 is analyzed by using
Box — Jenkins’s model. Out of which we will present only one nationality with all the process
and rest will be presented with best fit models. The Box-Jenkins model consist of following
steps: model identification, parameter estimation, diagnostic checking and model forecasting.
3.1.1 Model identification.

1. To use Box - Jenkins methodology, the series should be stationary. In this study, the graphical
methods have been used to check the stationary of the series. In graphical method, graph and

correlogram have been used. Figure 1 shows the graph of monthly American tourist visited
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during 2011 — 2015. The data set suggests that the series is not stationary in variance. To
stabilize the variance, we used Box-Cox transformation (Buthmann, n.d.). The preliminary
residual mean square errors are calculated using the power transformation by SAS system
software version 9.1 and we need logarithm transformation. Figure 2 shows the graph of monthly
logarithm transformed American tourist visited which is stationary in the mean and variance.
(Sample ACF and Properties of AR(1) Model. n.d.).
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Fig. 1 The monthly American tourist visited
during 2011 -2015 Fig. 2 The monthly logarithm transformed
American tourist visited during 2011 -2015
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Figure 3 Sample ACF and PACF of monfhly

logarithm transformation of American tourist visited (Nau, n.d.).
Figure 3 shows sample ACF and PACF with 95% confidence limits. (Adhikari & Agrawal, 2013,
pp. 1-3) The ACF shows damp sine cosine wave and slow decaying of the spikes indicates
cyclic or seasonal movement of the correlation (Keshvani, 2013). Therefore to confirm the
seasonality, we perform periodogram analysis. The periodogram analysis of the logarithm of
monthly American tourist visited is clearly dominated by a very large peak at frequency,
1.04720. This frequency corresponds to a period of Pequals 6. It indicates that the data exhibit an
approximate of 6 months cycle. So we need first seasonal differencing of period 6 months.
Figure 4 shows sample ACF and PACF of monthly logarithm transformation of American tourist
visited for first seasonal differencing at period 6 months. The sample ACF shows spike at lag 1,
6 and 12 and PACF cuts off after lag 6. Therefore, the tentative models are ARIMA (1, 0, 0) x
0, 1, 1)6, ARIMA (1, 0, 0) x (0, 1, 2)6, ARIMA (4, 0, 0) x (0, 1, 2)6, ARIMA (5, 0, 0) x (0, 1,
1)6 ,ARIMA (5, 0, 0) x (0, 1, 2)6 ARIMA (0, 0, 1) x (1, 1, 1)6, ARIMA (0, 0, 1) x (1, 1, 0)6,
ARIMA (0, 0, 0) x (1, 1, 0)6 and ARIMA (0, 0, 0) x (0, 1, 1)6..
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Figure 4 Sample ACF and PACF of monthly logarithm transformation of American tourist visited

for first seasonal differencing at period 6 months.

3.1.2 Model estimation and Evaluation

To check model adequacy, we consider whether the residuals of the model are white noise by
using a Q statistic test with k = 12. The values of the Q statistic and p-values are given in Table
1. Procedure of choosing the models depends on the value of AIC and SBC (EKPENYONG,
2016). The model with the minimum values is considered as the best model for the data set
(Scott, 2019). The models are presented in Table 2. From Table 2 the least AIC and SBC is
ARIMA (0, 0, 1) x (1, 1, 0)6 that indicates the ARIMA (0, 0, 1) x (1, 1, 0)6 is the best model for
forecasting the monthly American tourist visited during 2011 — 2015. (Yong & Brook, 2014).
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Table 1The Q statistic test for k=12 of the tentative models for monthly American tourist visited.

Model Q statistic p-value
1. ARIMA (1, 0,0) x (0,1, 1)s 40.23 <.0001
2. ARIMA (1,0,0) x (0, 1, 2)¢ 31.25 0.0005
3. ARIMA (4,0,0) x (0, 1, 2)6 25.47 0.0006
4. ARIMA (5, 0,0) % (0,1, 1)s 47.51 <.0001
5. ARIMA (5, 0,0) x (0, 1, 2)6 31.26 0.0005
6. ARIMA (0,0,1) % (1,1, 1) 12.51 0.1862
7. ARIMA (0, 0,1) x (1,1, 0)s 9.7 0.4676
8. ARIMA (0, 0,0) x (1, 1, 0) 14.77 0.1934
9. ARIMA (0,0,0) x (0,1, 1)s 50.71 <.0001
Table 2 The summary of AIC and SBC for American visited.
Model AIC SBC
6. ARIMA (0,0,1) x (1,1, 1)s 7.997593 13.6112
7. ARIMA (0, 0,1) x (1,1, 0) 7.056717 10.79912
8. ARIMA (0, 0,0) x (1, 1, 0)s 20.17794 22.04914

3.1.3 Diagnostic checking

In time series modeling the selection of best fit model is directly related to how well the residual

analysis is performed. One of the assumptions of ARIMA model is that for a good model the

residual should be white noise (Pelgrin, 2011).

Form the Figure 5 the sample ACF and PACF of the model shows that the autocorrelation of the

residual are all close to zero which mean they are uncorrelated, hence the residual assume mean

of zero and constant variance. Finally the p-value (0.4676) for the Ljung-Box statistic clearly
exceeds 5% for all lag orders. Thus the selected model ARIMA (0, 0, 1) x (1, 1, 0)s satisfies all

the model assumptions.

Table 3 Parameter estimation of appropriate ARIMA (0, 0, 1) x (1, 1, 0)s

Model MA1 SAR1
Parameter 0.87445 0.7458
SE 0.09300 0.10328
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Figure 5 Sample ACF and PACF of the residual of ARIMA (0, 0, 1) x (1, 1, Q)6

3.1.4 Forecasting

The forecast values with 95 percent forecast limit of the ARIMA (0, 0, 1) x (1, 1, 0)sof model for
monthly American tourist are shown in Table 4 with standard error, lower and upper limit
(Ekpenyong, 2016).

Table 4 Forecasted value for 6 months American tourist visited for 2015

95% confidence limit
Date Tourist visited Forecasted value Error
Lower Upper
Jul-15
131 244.6 148.4 403.4 -113.6
Aug-15
198 242.0 129.8 451.4 -44
Sep-15
681 813.3 436.1 1386.2 -132.3
Oct-15
1514 1449.4 777.1 2702.9 65.6
Nov-15
1020 897.3 481.2 1673.4 122.7
De-15
323 371.6 199.3 693.0 -48.6
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3.2 The best fitted model for each nationality

By considering all the steps in Box-Jenkins methodology the best fit model with t-ratio

variance of white noise forall the nationalities are shown in Table 5.

Table 5 The best fitted model for each nationality

JMSCM, Vol.3, No.1, October, 2021

and

Nationality/model

Parameters estimated &,°

L ﬁg‘lel\r/:"fr(‘o 0.1) (1+0.87445B°) In X, = (1+0.74358B)a, 0.065113
(11,06 (0.09300) (0.10328)
2. ik'tl'lf;‘A 0,0, 1) x (1+0.99004B°)/ X, = (1+0.39654B)(1 - 0.43849B"° ), 7.374285
12 (0.07764) (0.12700)  (0.14988)
3 ﬁ;ﬁtS'A'a(”o 0.0 % (1+0.83277B%)In X, = a,0.120644
(1,1,0) (0.10493)
4. ijg?&pgrffnl 0) x (1+0.54467B)(1+0.31214B°),/X, =a_ 6.467712
(11,06 (0.11637)  (0.12178)
5. ZrSTI\CAhA (0, 0.0) x (1+0.94419B°)\[X, =@, 6.232704
(1,1,0) (0.07173)
6. GAeFr{TwA (0.0, 0) x (1+0958228°)\/X, =a, 19.81132
(1,1, 0)s (0.09604)
7. Chinese 2 3 4
ARIMA (4, 1,0) x | (L+050235B +0.20826B" + 0.813478" + 065127B)X, =, 24169.85
0, 0, 0) (0.12606) (0.11889) (0.11812)  (0.15240)
8 LE'M ALLyx | O B)/X, = (1+0.83645B)a 0.692335
0, 0, 0) (0.03225) (0.11171)
9. Malaysian
ARIMA (5,1,1) x | 9.524783
(0,0,0) 2 3 4 5
(1+0.23876B + 0.806388° + 0.70042B° + 0570618" + 0.43780B°),/X, = (L+ 0.77508B)a,
(0.17488) (0.22156) (0.23070) (0.21658) (0.14701)(0.17466)
10. Japanese 3
ARIMA (3,1,1)x | (1+0383898°)X, = (1-052109B)a, 31153.39
0,0,00 (0.13307) (0.11981)
Total

ARIMA (0, 0,1) % (L, 1, 0)s

(1+0.79357B°), /x[ — 2.24357 - (1+ 0.47057B)a,
(0.13374) (0.97511) (0.14447)

68.71606
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4. Conclusion

In this study, a univariate time series models are selected by using the data of the past monthly
tourist visited from top ten market sources during 2011 — 2015 obtained from Tourism Council
of Bhutan. We applied Box-Jenkins model for forecasting the monthly tourist inflow in Bhutan.
The graph, correlogram and periodogram of data show that some of nationalities data sets have
seasonality at the period 6. From Table 5 we see that the best model for each nationality is
divided into 2 groups. In the first group the model is ARIMA model which consist of Chinese -
ARIMA (4,1, 0) x (0, 0, 0), Thai - ARIMA (1, 1, 1) x (0, 0, 0), Malaysian - ARIMA (5, 1, 1) x
(0, 0, 0) and Japanese - ARIMA (3, 1, 0) x (0, 0, 0) and in the second group it is seasonal
ARIMA model which consist of Australian-ARIMA (0, 0, 0) x (1, 1, 0)6, British - ARIMA (0, 0,
1) x (1, 1, 2)s, American- ARIMA (0, 0, 1) x (1, 1, 0)s, Singaporean - ARIMA (0, 1, 1) x (1, 1,
0)s, French - (0, 0, 0) x (1, 1, 0)s, German - ARIMA (0, 0, 0) x (1, 1, 0)s and overall data -
ARIMA (0, 0, 1) x (1, 1, 0)e Among the visitors, Chinese, Thai, Malaysian and Japanese doesn’t
show seasonality. [Otieno, Mung’ta & Orwa, 2014). | The main purpose of visitors from these
four countries is to experience culture and tradition, and for spiritual and wellness activities
which happen throughout the year so the season doesn’t hinders the interest of their visit. But for
American, Australian, British, Singaporean, French, and Germany shows seasonality as most of
them preferred for adventurous tourism. The spring and autumn weather is basically warm and
less rainfallwhich makes it favorable for the visitors those who are interested in (Tourism council
of Bhutan, n.d.).
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