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Abstract 
Numerical investigations were carried out to study thermal radiation effects on magneto-hydrodynamics 

(MHD) unsteady Couette flow heat mass transfer free-convective in vertical channels due to ramped and 

isothermal temperature. The governing coupled non-linear partial differential equations of the flow were 

transformed into non-dimensional form using suitable dimensional quantities. Finite element method 

(FEM) was employed to find numerical solution of the dimensionless governing coupled boundary layer 

partial differential equations. The expressions of velocity, temperature, concentration, skin friction, Nusselt 

number as well as Sherwood number have been obtained and discussed using line graph. From the outcome 

of the result it was revealed that, increase of porosity parameter  K, ratio of mass transfer parameter N, 

Time parameter t, Eckert number Ec  enhances the velocity and temperature while reverse is the case with 

the with increase of Magnetic parameter M, Radiation parameter tern R and Prandtl number Pr.  At y = 0, 

the fluid skin friction gets enlarged with increase in porosity parameter  K, Nusselt number gets increased 

with increase of Prandtl number Pr   and Sherwood number gets boosted with increase of Eckert number 

Ec . Similarly, at y = 1 skin friction gets enhanced with increase of porosity parameter  K, Nusselt number 

diminishes with increase of Prandtl number Pr  and Sherwood number gets enlarged with increase of Eckert 

number Ec . 

Keywords: MHD, thermal radiation effects, isothermal temperature, ramped temperature 

1. Introduction 

Studying thermal radiation effects on magneto-hydrodynamics (MHD) has attracted the interest of 

many researchers in applied mathematics and engineering sciences due to the applications of such 

flows in the context of aerodynamics.  The process by which energy is emitted from one body to 

another as electromagnetic waves or as moving subatomic particles is known as radiation. 

Emission of electromagnetic energy results in a decrease in the energy level which is vital in 

temperature stabilization. Heat transfer problems are classified according to the variable that the 

temperature depends upon. For example if the temperature is independent of time, the problem is 
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referred to steady-state problem, while on the other hand if the temperature is a function of time, 

the problem is classified as unsteady or transient. 

The study of MHD flow has attracted a lot of attentions from many researchers as a result of its 

wide applications in astrophysics and geophysics. It is applied to the study of stellar and solar 

structures, interstellar matter, and radio propagation through the ionosphere. In engineering, it is 

applied in MHD pumps, MHD bearings, nuclear reactors, geothermal energy extraction and in 

boundary layer control in the field of aerodynamics. Animasaun, Raju and Sandeep (2016) 

analyzed effects of nonlinear thermal radiation and induced magnetic field on viscoelastic fluid 

flow toward a stagnation point. Similarly Bala, Kumar and Lin (2016) studied the nonlinear 

coupled evolution equations, which modeled the transient MHD natural convection and mass 

transfer flow of viscous, incompressible and electrically conducting fluid between two infinite 

vertical plates.  This study was carried out in the presence of the transversal magnetic field, thermal 

radiation, thermal diffusion and diffusion-thermo effects. They discovered that as the radiation, 

temperature difference, sustention parameter, thermal-diffusion, diffusion-thermo, and non-

dimensional time parameters increase, both the velocity and temperature increase. Furthermore, 

Ganesh, Gireesha, Manjunatha and Rudraswamy (2017) analyzed the effect of nonlinear thermal 

radiation on double diffusive free convective boundary layer flow of a viscoelastic nanofluid over 

a stretching sheet. They discovered increasing values of temperature ratio parameter 𝜃𝑤 

extinguishes the rate of heat transfer |θ′ (0)| for fixed Pr and R, also the temperature ratio parameter 

𝜃𝑤and the thermal radiation parameter R have the same effect. 

Bhatti, Zeeshan, and Ellahi (2017) studied the effects of heat transfer on particle fluid suspension 

induced by metachronal. Their study revealed that an increment in thermal radiation R and Casson 

fluid parameter ∆ causes a reduction in the temperature profile when the influence of MHD and 

thermal radiation are taken into consideration through the help of Ohm’s law and Roseland’s 

approximation. Additionally, Ganesh et al. (2017) analyzed two-phase boundary layer flow and 

heat transfer of a Williamson fluid with fluid particle suspension over a stretching sheet. The region 

of temperature jump and nonlinear thermal radiation was considered in the energy transfer process. 

They reported that, the thermal boundary layer thickness gets thinner due to increase in 

temperature jump parameter.  They also revealed that intensifying of 𝛽𝑣 and 𝛽𝑡 reduces fluid phase 

velocity and temperature profile. Alao, Fagbade and Falodun (2016) studied the influence of some 

thermo-physical properties of fluid on heat and mass transfer flow past semi-infinite moving 

vertical plate. The fluid considered was optically thin in such a way that the thermal heat loss on 

the fluid is modeled using Rosseland approximation. They revealed that an increase in the thermal 

radiation parameter leads to the boosting of both the velocity and temperature profiles. They 

further revealed that the velocity profile as well as the concentration profile gets enhanced with an 

increase in the Soret number. 

In the study of Shagaiya and Simon (2015) the influence of buoyancy and thermal radiation on 

MHD flow over a stretching porous sheet was analyzed. Their model which highly constituted 
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nonlinear governing equations was transformed using similarity solution and then solved using 

homotopy analysis method (HAM). From their research it was found that when the buoyancy 

parameter increases, the fluid velocity gets enlarged and the thermal boundary layer gets reduced. 

In case of the thermal radiation, they observed that increasing the thermal radiation parameter 

produces significant enhancement in the thermal conditions of the fluid temperature. This causes 

more fluid in the boundary layer due to buoyancy effect, causing the velocity in the fluid to 

increase. The hydrodynamic boundary layer and thermal boundary layer thicknesses were 

observed to increase as a result of increasing radiation. Nayak (2017) studied three dimensional 

(MHD) flow and heat transfer analysis associated with thermal radiation as well as viscous 

dissipation of nanofluid over a shrinking surface. He found that temperature the thermal boundary 

gets enhanced due to increase in viscous dissipation which leads to thicker thermal boundary layer. 

He also revealed that enlarging the temperature is simply increasing the radiation parameter, R. 

He further revealed that there is an increase in fluid velocity when suction is present at the 

shrinking surface. Moreover, Rizwan, Nadeem, Hayat and Sher (2015) studied the stagnation point 

flow of nanofluid with MHD and thermal radiation effects passed over a stretching sheet. 

Moreover, they considered the combined effects of velocity and thermal slip and found that rising 

in Hartmann number gives the resistive type flow within the boundary layer; consequently velocity 

profile shows the decreasing behavior with an increase of M. The thermal slip parameter provides 

the decreasing behavior in the temperature profile. While on the other hand radiations parameters 

give rise in temperature profile. 

Siva and Anjan (2016), studied finite element analysis of heat and mass transfer past an 

impulsively moving vertical plate with ramped temperature. From their study the velocity gets 

intensified with increase of the values of thermal buoyancy force, solutal buoyancy force, 

permeability parameter and time. Shagaiya and Daniel (2015) investigated the theoretical 

influence of buoyancy and thermal radiation on MHD flow over a stretching porous sheet. He 

reported that, increasing the thermal radiation parameter produces significant enhancement in the 

thermal conditions of the fluid temperature which led to more fluid in the boundary layer due to 

buoyancy effect, causing the velocity in the fluid to increase. From the analysis of Adamu and 

Bandari (2018) the thermal and solutal buoyancy parameters on the nanofluid flow, heat, and mass 

transfer characteristics due to a stretching sheet in the presence of a magnetic field were studied. 

They discovered that, the axial velocity of the fluid get increased with an increase of both thermal 

and solutal buoyancy parameter, while the thermal conductivity of the fluid get reduced. In the 

research of Danjuma, Haliru, Ibrahim and Hamza (2019), the influence of unsteady Heat Transfer 

to MHD Oscillatory flow of Jeffrey fluid through a porous medium under slip condition analyzed. 

They reported that, the temperature profile gets enhanced with increasing Peclet number and the 

velocity profile gets reduced with increasing Hartmann number and Dacy number.  Reddy, Raju 

and Rao and Gola (2017) analyzed the influence of an unsteady magneto-hydrodynamics natural 

convection on the Couette flow of electrically conducting water at 40 C (Pr = 11.40) in a rotating 

system. The primary velocity, secondary velocity and temperature of water at 4o C as well as shear 

stresses and rate of heat transfer were obtained for both ramped temperature and isothermal plates. 
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The present numerical investigation analyzed finite element analysis of thermal radiation effects 

on unsteady MHD heat mass transfer Couette flow in free convective vertical channels due to 

ramped and isothermal temperature. The governing coupled, non-linear, partial differential 

equations of the flow were solved using finite element method. The velocity, temperature, 

concentration as well as shear stress have been obtained for both and continuous ramped 

temperature isothermal plates. 

2. Formulation of the Problem  

Consider an unsteady free convection flow of an incompressible electrically conducting viscous 

dissipative fluid past an infinite vertical porous plate. Let the x* -axis be chosen along the plate in 

the vertically upward direction and the y* axis is chosen normal to the plate. A uniform magnetic 

field of intensity H0 is applied transversely to the plate. The induced magnetic field is neglected as 

the magnetic Reynolds number of the flow is taken to be very small. Initially, the temperature of 

the plate 
*T  and the fluid 𝑇𝑤

∗  are assumed to be the same. The concentration of species at the plate 

𝐶𝑤
∗  and 𝐶0

∗ are assumed to be the same. At time t*>0, the plate temperature is changed to 𝑇𝑤
∗ , which 

is then maintained constant, causing convection currents to flow near the plate and mass is supplied 

at a constant rate to the plate. Under these conditions the flow variables are functions of time y* 

and t* alone. The problem is governed by the following equations: 
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The corresponding initial and boundary conditions are: 

Case I:  Isothermal Temperature  Case II:  Continuous Ramped Temperature
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 (4)

We now introduce the following non- dimensional quantities into the basic equations and initial 

and boundary conditions in order to make them dimensionless
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On the substitution of equations (5) into (1) - (4) the following governing equations in non-

dimensional form are obtained.
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The corresponding initial and boundary conditions are 

Case I: Isothermal Temperature  Case II: Continuous Ramped Temperature 
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3. Method of the Solution

 

Equations (6) – (8) are a coupled non-linear system of partial differential equations and were to be 

solved under the boundary conditions (9) using highly validated and robust method known as finite 

element method (Galerkin approach). 

By applying Galerkin finite element method for equation (6) over the element ,e  i jy y y   is 
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Equation (10) is reduce to: 
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Dropping the first term of equation (3.18): 
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be a linear piecewise approximation solution over the two 
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Hence equation (13) after simplifying becomes: 
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Also simplifying equation (14) above we have: 
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Now if we consider the row corresponding to the node i  to zero with l h , from equation (16) the 

difference schemes reads:
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Using the trapezoidal rule on (17), the following system of equations in Crank-Nicolson method 

are obtained as: 
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Similarly, by solving (7) and (8) using the same method we have: 
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With 
2

k
r

h
  and h and k are the mesh size along y direction and time direction respectively. Index 

i refers to space and j refers to the time. In equations (18), (19) and (20), taking 1(1)i n  and 

using the initials and boundary conditions (9), the following system of equations is obtained

 i i iA X B        1(1)i n  

Where iA matrices of are order n and  and  i iX B  are column matrices having n components. The 

solution of the system of equation are obtained using Thomas algorithm for velocity, temperature 

and concentration. For various parameters the results are computed and p resented graphically. 

The skin friction, Nusselt number and Sherwood number are important physical parameters for 

this type boundary layers flow. With known values of velocity, temperature and concentration 

fields. The skin-friction at the plate is given by non-dimensional form:  

0,1y

u

y




 
  

           (21)

 

The rate of heat transfer coefficient can be obtained in the terms of Nusselt number in non-

dimensional form as  
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The rate of mass transfer coefficient cab be obtained in terms of Sherwood number in non-

dimensional form given by 

0,1

                                                                                                                          (23)h
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4. Results and Discussion 

In order to analyze the effects various parameters on flow field in the boundary layer region, Finite 

element method was employed to solve equations (6) to (8) under the boundary conditions (9). We 

studied the effects Prandtl number Pr , Radiation parameter R , Eckert number Ec Schmidt 
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number Sc , magnetic parameter M, porosity parameter K, Buoyancy effect parameter 
tr , ratio of 

mass transformation (N) on fluid velocity, temperature and concentration and they were presented 

graphically. Pr 0.71 , 0.5R  , 0.1Ec  , 0.5Sc  , 0.5M  , 0.5K  0.5tr  , 0.5N  . The values 

above were adopted to be default parameters values under the present study. There velocity profiles 

are presented in the following figures: 

Figure 1: Effect of M on velocity profile 

Figure 2:  Effect Pr on velocity profile 
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Figure 3: Effect of K on velocity profile  

 

Figure 1 gives the details about the control of magnetic parameter M on velocity for both 

isothermal and ramped plate. From that figure it is noticed that the velocity begins to reduce at all 

point of the flow field by increasing the values of magnetic parameter M. This is true since 

magnetic parameter produce resistive force, which acts opposite direction to the fluid motion. 

Similarly, Figure 2 gives the details about the control Prandtl number Pr  on fluid velocity for both 

isothermal and ramped plate. From that figure it is noticed that fluid velocity begins to diminish at 

all point of the flow field by increasing the values of Prandtl number Pr . While Figure 3 gives the 

details control about porosity parameter K on fluid velocity for both isothermal and ramped plate 

and it is also observed that fluid velocity begins to increase at all point of the flow field on 

increasing the values porosity parameter K. 

Figure 4 demonstrates the influence of the ratio of mass transfer parameter N on the fluid velocity 

for both isothermal and ramped plate. It is observed that the fluid velocity gets enlarged by 

increasing the values of the ratio of mass transfer parameter N for both isothermal and ramped 

plate. While Figure 5 demonstrate the influence of Radiation parameter term ( R ) on the fluid 

velocity for both isothermal and ramped plate. It is also clearly observed that the fluid velocity 

gets reduced for both isothermal and ramped plate by increasing the values of Radiation parameter 

term ( R ). 
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Figure 4: Effect of N on velocity profile 

Figure 5: Effect of R on velocity profile 
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Figure 6: Effect the different values Ec and t on velocity profile 

Figure 6 displays the effect of Eckert number Ec  and time t parameter on the fluid velocity for 

both isothermal and ramped plate. It is observed that the velocity get significant enhancement by 

increasing the values of Ec and time parameter t for both isothermal and ramped plates. There 

temperature profiles are presented on the following figures: 

Figure 7: Effect Pr  and on temperature profile 
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Figure 7: Effect R  and on temperature profile 

Figure 9: Effect the different values 𝐸𝑐 and t on temperature profile 

Figure 7 depicts the influence of Prandtl number Pr  on fluid temperature for both isothermal and 

ramped plate. It is revealed from that figure the fluid temperature diminishes by increasing the 

values of Prandtl number Pr. Similarly figure 8 depicts the influence of radiation parameter term 

R on fluid temperature for both isothermal and ramped plate. It is also revealed from the figure 

that figure the fluid temperature gets reduced by increasing the values of Radiation parameter term 

R. 

Figure 9 displays the effect of Eckert number Ec  and time t parameter on the fluid temperature 

for both isothermal and ramped plate. It is observed that the temperature profile gets enlarged by 

increasing the values of Eckert number Ec and time parameter t for both isothermal and ramped 

plate.  
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Figure 10(a) &10(b): Effect Pr and K on Skin friction 

Figure 11(a) &11(b): effect t  and R on Nusselt number 

Figure 12(a) &12(b): effect Ec and Sc on Sherwood number 

Figure 10(a) and 10(b) displays the effect of Prandtl number Pr and porosity parameter K on the 

fluid skin friction. It is clearly seen that, increase in Prandtl number has no significant effect on 

skin friction in both Figure 10(a) and 10(b). While increase in porosity parameter K has boosting 
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effect on skin friction in Figure 10(a) and 10(b). Similarly, Figure 11(a) and 11(b) displays the 

effect of time parameter and radiation parameter on the Nusselt number.  It is clearly observed that 

in Figure 11(a) increase time parameter t has significant enhancing effect on Nusselt number and 

increase in radiation parameter has no significant effect on Nusselt number. In Figure 11(b) Nusselt 

decreases with increasing time parameter t and radiation parameter has no significant effect on 

Nusselt number. Figure 12(a) and12 (b) displays the effect of Eckert number Ec  and Schmidt 

number Sc  on Sherwood number and it is seen that Schmidt number has increasing effect on 

Sherwood number in Figure 12 (a) and has no significant effect on Sherwood number in Figure 12 

(b). Increase Eckert number has no significant effect on Sherwood number in Figure 12(a) and has 

significant increasing effects on Sherwood number in Figure 12 (b). 

5. Conclusion 

In this paper, we studied the thermal radiation effects on unsteady heat and mass transfer Couette 

flow of free convective vertical channels due to ramped and isothermal temperature. From the 

study, the following conclusions were drawn: 

i.  Increase of porosity parameter K, ratio of mass transfer parameter N, Eckert number Ec   

time parameter t enhances the velocity while reverse is the case with the increase of 

Magnetic parameter M, Radiation parameter tern R and Prandtl number Pr . 

ii. Similarly increase of Eckert number Ec  and time parameter t enhances the temperature 

profile and reverse is the case with the increase of Magnetic parameter M, Prandtl number

Pr and Radiation parameter R. 

iii. Prandtl number has no effects on skin friction at y = 0 and y = 1, skin friction at y=0 and 

y=1 gets enlarged with the increase of porosity parameter K. 

iv. Increase in radiation parameter R has no effects on Nusselt number at y = 0 and y = 1, but 

increase in Prandtl enhances the Nusselt number at y = 0 and it diminishes it at y = 1. 

v. Schmidt number has boosting effects on Sherwood number at y = 0 and has no effects in 

Sherwood number at y = 1. While Eckert number has no effects on Sherwood number at 

y=0 and has significant enlarging effects on Sherwood number at y = 1. 
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