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Abstract 

We present and explore a novel mathematical treatment model of the epidemiology of Lassa Fever (LF). 

The model is a system of nonlinear ordinary differential equation model for rodent and human 

population. We analyzed the model to find the stability of the disease-free equilibrium and test which 

model parameters affect this stability most significantly. The purpose of this paper is to investigate the 

impact of treatment on the control of LF. The analysis revealed that treatment rate of humans will have 

a positive impact in reducing the burden of LF in the population. Our model predicts that treatment 

control can reduce the population level transmission by up to 12% alone without existing interventions. 

Therefore, treatment has significant effect on LF transmission, but it may not be able to eliminate the 

disease unless a multiple control strategy is adopted.  Finally, some numerical simulations were carried 

out to support our theoretical results. 
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INTRODUCTION  

Lassa fever (LF) is a deadly epidemic disease which threaten public health security and was 

discovered in Nigeria in 1969. LF is a viral hemorrhagic fever caused by the arenavirus and 

transmitted primarily from rodents (multimammate rats) to humans, human to human and 

aerosol transmission [7]. The Arenaviruses are a family of viruses whose members are 

generally associated with rodent-transmitted diseases in humans. The incubation period is 2-

21 days in a susceptible host and treatment is done using ribavirin drug which is effective when 

started within the first 6 days of illness. An estimated 300,000-500,000 infections per year with 

5000 deaths have been reported [7]. The spread of infection diseases has always been of 

concerns and a threat to public health epidemiologists [3]. Among the control strategies of 

control of LF, treatment is of interest in this paper. Treatment is essentially supportive. 

Antiviral, ribavirin is most effective when started within the first 6 days of illness [7, 10].  

The prevention and control of LF abound such as village-based programs for rodent control 

and avoidance, hospital training programs to prevent the nosocomial spread, including barrier 

nursing, diagnostic technology transfer, and specific antiviral chemotherapy (ribavirin) [10]. 

The antiviral drug called ribavirin has been suggested to be an effective treatment for LF if 

given early on in the course of clinical illness. According to clinical literature, there is lack of 
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evidence to support the role of ribavirin as post-exposure prophylactic treatment for LF. Since 

vaccine against LF is not available, ribavirin has been recommended as standard treatment but 

the evidence base for this recommendation has been questioned recently. It has been noted that 

the efficacy of ribavirin for treating LF is uncertain but data from a prospective trial suggest a 

beneficial effect in patients with severe forms of LF. It has also been noted that re-assessment 

of the effectiveness of ribavirin in the treatment of LF is necessary and seems urgently required 

[11]. An important question asked by public health epidemiologists is: to what extent does 

treatment control reduce the population level transmission of LF alone without existing 

interventions? This is the motivation for this mathematical modelling study. 

TREATMENT MODEL OF LASSA FEVER  

It has been noted that no vaccine available against Lassa fever disease in humans, and the sole 

treatment relying on ribavirin is only effective if administered early in infection [5]. According 

to [1], the modeled viral kinetics suggests that the main mode of action of ribavirin is to protect 

infected cells from dying, possibly reducing the inflammatory response, while having no effect 

on viral production or transmission. Few modeling studies have been carried on the spread of 

LF [9, 8, & 6] with little understanding of treatment impact. The goal of this paper is to 

investigate, using mathematical modelling approach, the impact of treatment on the control of 

LF. To determine the effect of treatment as a control strategy on the transmission of Lassa fever 

disease, we incorporate early and late stage treatment compartments into the basic Lassa fever 

transmission model developed by Obasi and Mbah [6]. The resulting system is given in the 

following equations: 
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The definitions of above model variables and parameters are listed in Table 1 and 2. 
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Table 1: Description of the state variables of the model  

Variable Description 

hS  Number of Susceptible humans 

hE  Number of Exposed humans 

hI  Number of Infectious humans 

1hT  Early stage treatment group 

2hT  Late stage treatment group 

hR  Number of Recovered humans 

rS  Number of Susceptible rodents 

rI  Number of Exposed rodents 

rR  Number of Infectious rodents 

 

Table 2: Description of the parameters of the Lassa fever model 

Parameters Description Values Source 

h  Recruitment level of humans 20 [6] 

r  Recruitment level of rodents 200 [6] 

  Per capita Lassa-induced death rate 0.2 [8] 

  Recovered human loss of immunity 0.9 [8] 

  Spontaneous individual recovery 0.001 [9] 

1  Transmission rate per contact by an infectious rodent 0.00002 [9] 

2  Transmission rate per contact by an infective through 

sexual activity 

0.2 [12] 

3  Transmission rate per contact by an infected human 0.08 [6] 

  Relative infectiousness of individuals with aerosol 0.03 [6] 

h  Natural mortality rate for humans 0.02041 [8] 
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r  Natural mortality rate for rodents 0.06 [8] 

  Progression rate of human from exposed to infected 0.05 [6] 

  Progression rate of rodents from exposed to infected 0.42 Estimated 

  Contact rate of rodent per human per unit time 0.005 [12] 

  Relative human-to-rodent transmissibility of infected 

humans 

0.6 [8] 

  Relative human-to-human transmissibility of 

infected humans 

0.4 [8] 

r  Rate of exposure to aerosol 0.005 [6] 

  Recovery rate of rodents 0.00001 [12] 

  Recovered rodent loss of immunity 0.001 Estimated 

  Rate of early stage treated group who recovers 0.2 Estimated 

  Fraction of early stage treatment group  (0,1) Assumed 

  Treatment rate of humans 0.8 Estimated 

 

BASIC PROPERTIES OF THE MODEL 

Since the model (1) monitors human population, all its associated parameters and state 

variables are assumed to be non-negative for all t ≥ 0. Before analysing the model, it is 

instructive to show that the state variables of the model remain non-negative for all non-

negative initial conditions. Thus, we claim the following result.  

Theorem 1: Let the initial data                  1 20 , 0 , 0 , 0 , 0 , 0 , 0 , 0 , 0h h h h h h r r rS E I T T R S I R  be non-

negative. Then, the solutions  1 2, , , , , , , ,h h h h h h r r rS E I T T R S I R  of model (1) are positive and bounded 

for all 0t  , whenever they exists. 

Proof: 

Suppose  0 0hS  . The first equation (1) of the system can be written as: 
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  is the integrating factor. Hence, integrating this last 

relation from 0  to 1t , we have 
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so that the division of both side by  t  yields 
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The same arguments can be used to prove that            , , , , , 0h h h r r rE t I t R t S t I t R t   for all 0t  . 

Furthermore, let 
1 2h h h h h hN S E I T T R      . Then, 

  1 2

1 2 1

(1 ) ( ) ( )

(1 ) ( ) ( )

, 0

h h h h h h

h h h h h h h h h h h h h h

h h h h h h h h h h

h h h h

N t S E I T T R

I R S S S E E I

I T I T vI T R

N I

            

         

  

     

              

         

    

 

This implies that as ,sup .h
h

h

t N



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r
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


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This completes the proof.  

Combining Theorem 1 with the trivial existence and uniqueness of a local solution for the 

model (1), we have established the following theorem which ensures the mathematical and 

biological well-posedness of system (1). 

Theorem 2: The dynamics of model (1) is a dynamical system in the biological feasible 

compact set 

 
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  (2) 

 

TREATMENT REPRODUCTION NUMBER AND LOCAL STABILITY OF DFE 

The model (1) has a disease-free equilibrium (DFE), obtained by setting the right hand sides 

of the equations in the model to zero, given by 

 
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0 0 0 0 0 0 0 0 0

0 1 2, , , , , , , , ,0,0,0,0,0, ,0,0
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  (3) 

The stability of 0  can be established using the next generation operator method on the system 

(1). Using the notations in van den Driessche and Watmough [6], the matrices F and V  , for 

the new infection terms and the remaining transfer terms respectively, are given by 
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In the calculation of matrices F and V  , we took the infection variables to be 
1 2, , ,h h h hE I T T  and 

rI  as explained in [6]. Thus 
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where 
TR  is obtained from  1FV  with   being the spectral radius of the matrix 1FV  . 

Computing the partial derivatives of TR  with respect to the parameters under investigation 

 ,   further reveals the effect of these parameters on Lassa fever control in the community. 

This gives 
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Clearly, it follows from (4) that the partial derivative is less than zero, unconditionally. Hence, 

treatment rate of humans will have a positive impact in reducing the burden of LF in the 

population, irrespective of the values of the other parameters in the expressions on the right-

hand sides of (4).  Furthermore, if the combined effect of preventive measures reduces 0R  by a 

factor q , then effective reproduction number   01TR q R   [6]. This implies that no outbreak 
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number 0R  by a factor q , i.e.   01TR q R  , we obtain that  
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Thus, introduction of treatment control significantly reduces the transmission of LF required 

for successful eradication of the disease (requirement of at least 12% effectiveness). This 

means that the treatment reproduction number TR is 12% smaller than the basic reproduction 

number 0R , indicating that the use of treatment as a control strategy is 12% effective on 

reducing LF transmission. This implies that early detection is of paramount importance in the 

control of Lassa fever in a population. However, this is an indication that the early stage group 

treatment program alone at this rate is not enough to eliminate the disease. So, multiple control 

strategy requires urgent assessment. 
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Lemma 1: The DFE of the model (1), 0 , is locally asymptotically stable if 1TR   and unstable 

if 1TR  . The threshold quantity TR is the effective reproduction number under treatment 

control for the Lassa fever model. Biologically speaking, Lemma (1) implies that Lassa fever 

can be eliminated from the community (when 1TR  ) if the initial sizes of the subpopulation of 

the model are in the basin of attraction of 0  in the presence of treatment.  

GLOBAL ASYMPTOTIC STABILITY: SPECIAL CASE 0   . 

Consider the model (1) with 0   . We claim the following: 

Theorem 2: The DFE of the model (1) with 0    is globally-asymptotically stable (GAS) 

whenever 1.TR   

Proof 

Consider the model (1) with 0   . Further, consider the following linear Lyapunov 

function 
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with Lyapunov derivative (where a dot represents differentiation with respect to t) 
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Hence, 0F   if 1TR   with 0F   if and only 0.hI   Therefore F  is a Lyapunov function in 

  and it follows Salle’s Invariance Principle [6], that every solution to the equations in (1) 

(with 0   ) with initial conditions in   converges to 0  as .t  i.e.,  

Theorem 3: If 1TR  , then endemic equilibrium point of the model (1) is globally 

asymptotically stable if 
1 1 2 2, , , ,h h h h h h h h h hS S E E I I T T T T         and unstable if 1TR  . 

Proof 

Consider the following Lyaponuv function, 

ISSN 2688-8300 (Print) ISSN 2644-3368 (Online) JMSCM, Vol.3, No.2, January, 2022

162 Journal of Mathematical Sciences & Computational Mathematics



       

        
  

  

2 2 2

1 2

1 1 1
, , , ,

2 2 2

,

( ) ( )

h h h h h h h h h h h

h h h h h h h h h

h h h h h h h h h h h h h h h

h h h h h h

h

Q S E I T T S S E E I I

Differentiating wrt t

dQ
S S E E I I S t E t I t

dt

S S E E I I S S E E I

S S E E I I H W

where

H

        



  

  

  

  

     

 

         

               

       

 ( ) ( ) ;h h h h h h hS E I W E              

 

Hence we have 0
dQ

dt
  if

1 1 2 2, , , ,h h h h h h h h h hS S E E I I T T T T         , also 0
dQ

dt
  if H W . 

Thus, it is clear that the endemic equilibrium point of the model (1) is globally asymptotically 

stable. So the proof is completed. 

NUMERICAL SIMULATIONS 

In this section, we use a numerical example to support the theoretical analysis above in this 

paper. By extracting some values from [9]. The simulations are produced by MATLAB. See 

Table 2 above for the description of parameters and their based line or range value. 
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Figure 1. Simulation results showing the general dynamics of the model 

 

EFFECT OF THE EFFECTIVE TREATMENT RATE 

In order to investigate the impact of the effective treatment rate on the spread of LF, we carry 

out some numerical simulations to show the contribution of effective treatment rate during the 

whole infection. From Figure 2, we can observe that infected individuals reach a lower point 

level as   increases. This Figure 2 illustrates the great influence of the effective treatment rate 

as shown in the threshold analysis. 
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                    Figure 2. Impact of effective treatment rate on the spread of LF. 

 

CONCLUDING REMARKS 

This paper is concerned with an epidemiological treatment model of Lassa fever (LF). The 

effect of treatment rate of humans on the model is investigated and the main results are given 

in terms of local and global stability. It has been shown that that treatment rate of humans will 

have a positive impact in reducing the burden of LF in the population. Our model predicts that 

treatment control can reduce the population level transmission by up to 12% alone without 

existing interventions. Therefore, treatment has significant effect on LF transmission, but it 

may not be able to eliminate the disease unless a multiple control strategy is adopted. 

Accordingly, we should reduce the reproduction number periodically so as to keep the number 

of infected below the capacity for treatment. Finally, some numerical simulations are carried 

out to support our theoretical results. Based on this, we carry out some numerical simulations 

to show the contribution of effective treatment rate during the whole infection. From the 

simulation results, we observed that infected individuals reach a lower point level as   

increases. This figure illustrates the great influence of the effective treatment rate as shown in 

the threshold analysis. It is hoped that this study would motivate public health epidemiologists 

to collect relevant data for further and better understanding of the effect of treatment on the 

dynamics of LF. 
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