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Abstract                                                                                                                    

In this paper, we consider a logarithmic viscoelastic plate equation with a delay term in a bounded 

domain. Under suitable conditions, we establish the blow-up of solutions in a finite time. Time delays 

often seem in thermal, economic phenomena, biological, chemical, physical, electrical engineering 

systems, mechanical applications and medicine. 
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1. INTRODUCTION 

In this paper, we consider the following logarithmic viscoelastic plate equatıon with delay term 

{
  
 

  
 𝑢𝑡𝑡 + ∆

2𝑢 − ∫ 𝑔
𝑡

0
(𝑡 − 𝑠)∆2𝑢(𝑠)𝑑𝑠 + 𝜇1𝑢𝑡(𝑥, 𝑡) + 𝜇2𝑢𝑡(𝑥, 𝑡 − 𝜏)

= 𝑘𝑢|𝑢|𝑝−2𝑙𝑛|𝑢|,                                                            𝑥 ∈ Ω, 𝑡 > 0,

𝑢(𝑥, 𝑡) =
𝜕𝑢(𝑥,𝑡)

𝜕ʋ
= 0,                                           𝑥 ∈ 𝜕Ω,   𝑡 ∈ [0,∞),

𝑢𝑡(𝑥, 𝑡 − 𝜏) = 𝑓0(𝑥, 𝑡 − 𝜏),                                                   𝑖𝑛 (0, 𝜏),

𝑢(𝑥, 0) = 𝑢0(𝑥), 𝑢𝑡(𝑥, 0) = 𝑢1(𝑥),                                      𝑥 ∈ Ω,

                                       (1) 

where Ω ⊂ 𝑅𝑛 (𝑛 ≥ 1) is a bounded domain with a sufficiently smooth boundary  𝜕Ω. 𝑝 ≥ 2, 

 𝑘, 𝜇1 are positive constants, 𝜇2 is a real number, 𝜏 > 0 represents the time delay and the 

functions 𝑢0, 𝑢1,  𝑓0 are the initial data to be specified later. ʋ is the unit outward normal vector 

to 𝜕Ω. Without logarithmic source term (𝑘𝑢|𝑢|𝑝−2𝑙𝑛|𝑢|), this model describes the deflection 

𝑢(𝑥, 𝑡) of a viscoelastic beam (when 𝑛 = 1) or a viscoelastic plate (when 𝑛 = 2). 
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This type of logarithmic term (𝑢|𝑢|𝑝−2𝑙𝑛|𝑢|) arises naturally in nuclear physics, optics, 

geophysics, supersymmetric and inflation cosmology (see Bartkowski and Gorka (2008), Gorka 

(2009)). Problems about the mathematical behavior of solutions for PDEs with time delay effects 

have become interesting for many authors mainly because time delays often appear in many 

practical problems such as thermal, economic phenomena, biological, chemical, physical, 

electrical engineering systems, mechanical applications and medicine. Moreover, it is well 

known that delay effects may destroy the stabilizing properties of a well-behaved system. In the 

literature, there are several examples that illustrate how time delays destabilize some internal or 

boundary control system (Hale (1993), Kafini and Messaoudi (2016)). 

We consider the vibration of a viscoelastic beam, in one-dimensional space. The constitutive 

relationship between the stress N and strain u satisfies 

𝑁(𝑥, 𝑡) = 𝛼𝑢𝑥𝑥𝑥 −∫ 𝑔(𝑡 − 𝑠)𝑢𝑥𝑥𝑥(𝑥, 𝑠)𝑑𝑠,
𝑡

0

 

where the constant 𝛼  represents the tension stiffness, and 𝑔 is so-called relaxation function. We 

can get, if there exists the load  𝐹(𝑥, 𝑡, 𝑢, 𝑢𝑡) on the beam, the following model: 

𝑢𝑡𝑡 +
𝛼

𝜌𝐴
𝑢𝑥𝑥𝑥𝑥 −

𝛼

𝜌𝐴
∫ 𝑔(𝑡 − 𝑠)𝑢𝑥𝑥𝑥𝑥𝑑𝑠
𝑡

0

=
𝐹

𝜌𝐴
, 

where 𝜌 and 𝐴 represent the density and the cross-sectional area of the beam, respectively.  

We have the Euler-Bernoulli viscoelastic model (when 
𝛼

𝜌𝐴
= 1, 𝐹 = 0), in high-dimensional 

space, as follows: 

𝑢𝑡𝑡 + ∆
2𝑢 − ∫ 𝑔(𝑡 − 𝑠)∆2𝑢(𝑠)𝑑𝑠

𝑡

0

= 0, 

where ∆ represents the Laplacian operator with respect to the spatial variables in 𝑅𝑛 (𝑛 ≥ 2) and  

∆2𝑢 = ∆(∆𝑢) =∑(∑𝑢𝑥𝑖𝑥𝑖

𝑛

𝑖=1

)

𝑥𝑗𝑥𝑗

,

𝑛

𝑗=1

 

(Yang (2015).  

In 1986, Datko et al. indicated that delay is a source of instability. Nicaise and Pignotti (2006) 

considered the following wave equation with a linear damping and delay term 

                              𝑢𝑡𝑡 − ∆𝑢 + 𝜇1𝑢𝑡(𝑥, 𝑡) + 𝜇2𝑢𝑡(𝑥, 𝑡 − 𝜏) = 0.                             (2) 
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They obtained some stability results in the case 0 < 𝜇2 < 𝜇1. In the absence of delay, Zuazua 

(1990) looked into exponentially stability for the equation (2). 

Kirane and Said-Houari (2011), studied the viscoelastic wave equation as follows: 

𝑢𝑡𝑡 − ∆𝑢 + ∫ 𝑔(𝑡 − 𝑠)∆𝑢(𝑠)𝑑𝑠
𝑡

0
+ 𝜇1𝑢𝑡(𝑥, 𝑡) + 𝜇2𝑢𝑡(𝑥, 𝑡 − 𝜏) = 0,                             (3) 

with suitable initial-boundary value conditions and proved the well-posedness and the energy 

decay of solutions, under the restriction 0 < 𝜇2 ≤ 𝜇1. In the presence of the logarithmic source 

term (𝑢|𝑢|𝑝−2𝑙𝑛|𝑢|𝑘), Pişkin and Yüksekkaya (2021a) established the local existence and proved 

the blow up of solutions in a finite time of the equation (3). 

Cavalcanti et al. (2001), studied the model as follows: 

𝑢𝑡𝑡 + 𝛾∆𝑢𝑡𝑡 + ∆
2𝑢 − ∫ 𝑔(𝑡 − 𝑠)∆2𝑢(𝑠)𝑑𝑠

𝑡

0
+ 𝑎(𝑡)𝑢𝑡 = 0,                                            (4) 

in Ω × (0,∞), where 𝑎(𝑡) is a nonlocal nonlinearity type function. They established the 

exponential decay result when 𝛾 = 0, of the energy in general domains of (4). Rivera et al. 

(1996), coupled (4) with a dynamic boundary condition and indicated that the sum of the first 

and second energies decay polynomially and exponentially, according as the relaxation function 

𝑔 decays polynomially or exponentially. Also, for more results on (4), see also Lagnese (1989). 

Mukiawa (2020), considered the viscoelastic plate equation as follows: 

𝑢𝑡𝑡 + ∆
2𝑢 − ∫ 𝑔(𝑡 − 𝑠)∆2𝑢(𝑠)𝑑𝑠

𝑡

0
+ 𝜇1𝑢𝑡 + 𝜇2𝑢𝑡(𝑡 − 𝜏) = 0,                           (5) 

with a constant time delay and partially hinged boundary condition. The author proved a general 

decay result of the equation (5). Yang (2015), proved the global solution of the equation (5) 

under suitable assumptions. 

Mustafa and Kafini (2017), studied the infinite memory-type plate equation in the presence of 

constant time delay as follows: 

𝑢𝑡𝑡 + ∆
2𝑢 − ∫ 𝑔(𝑠)∆2𝑢(𝑡 − 𝑠)𝑑𝑠

∞

0
+ 𝜇1𝑢𝑡 + 𝜇2𝑢𝑡(𝑡 − 𝜏) = 𝑢|𝑢|

𝛾.                     (6) 

The authors proved an explicit and general decay result for the energy, under the condition that 

|𝜇2| ≤ 𝜇1, without restrictive assumptions on the behavior of the relaxation function 𝑔 at infinity 

of the equation (6). 

Kafini and Messaoudi (2020), considered the problem: 

                              𝑢𝑡𝑡 − ∆𝑢 + 𝜇1𝑢𝑡(𝑥, 𝑡) + 𝜇2𝑢𝑡(𝑥, 𝑡 − 𝜏) = 𝑢|𝑢|𝑝−2𝑙𝑛|𝑢|𝑘.                  (7) 
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They studied the local existence and the blow up result of the equation (7). In recent years, some 

other authors investigate hyperbolic and parabolic type equations (see Antontsev et al. (2021), 

Al-Gharabli et al. (2020), Ferreira et al.(2021), Mezouar et al. (2020), Pişkin and Polat (2013), 

Pişkin and Yüksekkaya (2018a), (2018b), (2018c), Pişkin and Yüksekkaya (2020a), (2020b), 

Pişkin and Cömert (2020), Pişkin and Çalışır (2020), Pişkin and Yüksekkaya (2021a), (2021b), 

(2021c), (2021d), (2021e), (2021f), (2021g), Yüksekkaya et al. (2021a), (2021b), Yüksekkaya 

and Pişkin (2021c)). 

To our best knowledge, there is no research on the viscoelastic plate equation with delay term 

and logarithmic source term. The aim of the present paper is to establish the sufficient conditions 

for the blow up to the nonlinear logarithmic viscoelastic plate equation with delay term. We 

extend the classical logarithmic wave equation to logarithmic viscoelastic plate equation.  

The paper is organized as follows: In section 2, we give some materials that will be used later. In 

section 3, we state and prove our main result. 

2. PRELIMINARIES 

In this part, we prepare some materials for the proof of our result. As usual, the notation ‖. ‖𝑝 

denotes 𝐿𝑝 norm, and (. , . ) is the 𝐿2 inner product. In particular, we write ‖. ‖ instead of ‖. ‖2. 

Now, we give some assumptions used in this paper. 

Assume that 𝑔: [0,∞) → [0,∞) is a nonincreasing and differentiable function satisfying 

1 − ∫ 𝑔(𝑠)
∞

0
𝑑𝑠 = 𝑙 > 0.                                                               (8) 

We make the following extra assumptions on 𝑔 

𝑔′(𝑠) ≤ 0 𝑎𝑛𝑑 ∫ 𝑔(𝑠)
𝑡

0
𝑑𝑠 <

𝑝(1−𝑎)−2

2
−
𝐶|𝜇2|

2

4𝜅𝐶0

1−
1

4ƞ 
−
𝑝(1−𝑎)

2

.                                   (9) 

Let 𝐵𝑝 > 0 be the constant satisfying (Adams (2003), Pişkin (2017)) 

‖∇ʋ‖𝑝 ≤ 𝐵𝑝‖∆ʋ‖𝑝, 𝑓𝑜𝑟 ʋ ∈ 𝐻0
2(Ω).                                            (10) 

It holds  

∫ 𝑔(𝑡 − 𝑠)(∆𝑢(𝑠), ∆𝑢𝑡(𝑡))
𝑡

0

𝑑𝑠 = −
1

2
𝑔(𝑡)‖∆𝑢(𝑡)‖2 +

1

2
(𝑔′𝜊∆𝑢)(𝑡) 

−
1

2

𝑑

𝑑𝑡
[(𝑔𝜊∆𝑢)(𝑡) − (∫ 𝑔(𝑠)

𝑡

0
𝑑𝑠) ‖∆𝑢(𝑡)‖2],   (11) 

where 
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(𝑔𝜊∆𝑢)(𝑡) = ∫ 𝑔(𝑡 − 𝑠)
𝑡

0

‖∆𝑢(𝑡) − ∆𝑢(𝑠)‖2𝑑𝑠. 

As in Nicaise and Pignotti (2008), we introduce the new variable 

𝑧(𝑥, 𝜌, 𝑡) = 𝑢𝑡(𝑥, 𝑡 − 𝜏𝜌), 𝑥 ∈ Ω, 𝜌 ∈ (0,1), 𝑡 > 0. 

Thus, we have 

𝜏𝑧𝑡(𝑥, 𝜌, 𝑡) + 𝑧𝜌(𝑥, 𝜌, 𝑡) = 0, 𝑥 ∈ Ω, 𝜌 ∈ (0,1), 𝑡 > 0. 

Therefore, problem (1) takes the form: 

{
 
 
 
 

 
 
 
 𝑢𝑡𝑡 + ∆

2𝑢 − ∫ 𝑔
𝑡

0
(𝑡 − 𝑠)∆2𝑢(𝑠)𝑑𝑠 + 𝜇1𝑢𝑡 + 𝜇2𝑧(𝑥, 1, 𝑡)         

= 𝑘𝑢|𝑢|𝑝−2𝑙𝑛|𝑢|,                                                       𝑖𝑛 Ω × (0,∞),
𝜏𝑧𝑡(𝑥, 𝜌, 𝑡) + 𝑧𝜌(𝑥, 𝜌, 𝑡) = 0,                     𝑖𝑛 Ω × (0,1) × (0,∞)

𝑧(𝑥, 𝜌, 0) = 𝑓0(𝑥, −𝜌𝜏),                                                𝑖𝑛 Ω × (0,1),

𝑢(𝑥, 𝑡) =
𝜕𝑢(𝑥,𝑡)

𝜕ʋ
= 0,                                        𝑥 ∈ 𝜕Ω,   𝑡 ∈ [0,∞),

𝑢(𝑥, 0) = 𝑢0(𝑥), 𝑢𝑡(𝑥, 0) = 𝑢1(𝑥),                                       𝑖𝑛 Ω,
 

                  (12) 

The energy functional associated with problem (12) is  

𝐸(𝑡) =
1

2
‖𝑢𝑡‖

2 +
1

2
(𝑔𝜊∆𝑢)(𝑡) +

1

2
(1 − ∫ 𝑔(𝑠)

𝑡

0
𝑑𝑠) ‖∆𝑢‖2                                    

+
𝑘

𝑝2
‖𝑢‖𝑝

𝑝 −
𝑘

𝑝
∫ |𝑢|𝑝
Ω

𝑙𝑛|𝑢|𝑑𝑥 +
𝜉

2
∫ ∫ |𝑧(𝑥, 𝜌, 𝑡)|2

1

0Ω
𝑑𝜌𝑑𝑥,             (13) 

where 

𝜏|𝜇2| < 𝜉 < 𝜏(2𝜇1 − |𝜇2|),       |𝜇2| < 𝜇1.                                         (14) 

We also set 

𝐻(𝑡) = −𝐸(𝑡) = −
1

2
‖𝑢𝑡‖

2 −
1

2
(𝑔𝜊∆𝑢)(𝑡) −

1

2
(1 − ∫ 𝑔(𝑠)

𝑡

0

𝑑𝑠) ‖∆𝑢‖2 

−
𝑘

𝑝2
‖𝑢‖𝑝

𝑝 +
𝑘

𝑝
∫ |𝑢|𝑝

Ω

𝑙𝑛|𝑢|𝑑𝑥 −
𝜉

2
∫ ∫ |𝑧(𝑥, 𝜌, 𝑡)|2

1

0Ω

𝑑𝜌𝑑𝑥, 

to prove our main result. 

The following lemma gives that the associated energy of the problem under the condition 𝜇1 >

|𝜇2| is decrasing. 
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Lemma 1. Let 𝑢 be the solution of (12). Then, for some 𝐶0 ≥ 0, 

𝐸′(𝑡) ≤ −𝐶0∫ (|𝑢𝑡|
2 + |𝑧(𝑥, 1, 𝑡)|2)

Ω

𝑑𝑥 +
1

2
(𝑔′𝜊∆𝑢)(𝑡) −

1

2
𝑔(𝑡)‖∆𝑢(𝑡)‖2 

≤ −𝐶0 ∫ (|𝑢𝑡|
2 + |𝑧(𝑥, 1, 𝑡)|2)

Ω
𝑑𝑥 ≤ 0.                                                     (15) 

Proof. Multiplying the equation (12) by 𝑢𝑡 and integrating over Ω, and use integration by parts, 

we obtain 

𝑑

𝑑𝑡
{
1

2
‖𝑢𝑡‖

2 +
1

2
(𝑔𝜊∆𝑢)(𝑡) +

1

2
(1 − ∫ 𝑔(𝑠)

𝑡

0

𝑑𝑠) ‖∆𝑢‖2 

+
𝑘

𝑝2
‖𝑢‖𝑝

𝑝 −
𝑘

𝑝
∫ |𝑢|𝑝

Ω

𝑙𝑛|𝑢|𝑑𝑥} 

= −
1

2
𝑔(𝑡)‖∆𝑢(𝑡)‖2 +

1

2
(𝑔′𝜊∆𝑢)(𝑡) 

−𝜇1 ∫ |𝑢𝑡(𝑡)|
2𝑑𝑥 −

Ω
𝜇2 ∫ 𝑢𝑡𝑧(𝑥, 1, 𝑡)𝑑𝑥.Ω

                                                 (16) 

We multiply the second equation in (12) by (𝜉/𝜏)𝑧 and integrate over Ω × (0,1), 𝜉 > 0, we 

have 

𝜉

2

𝑑

𝑑𝑡
∫ ∫ 𝑧2(𝑥, 𝜌, 𝑡)

1

0Ω
𝑑𝜌𝑑𝑥 +

𝜉

𝜏
∫ ∫ 𝑧(𝑥, 𝜌, 𝑡)𝑧𝜌

1

0Ω
(𝑥, 𝜌, 𝑡)𝑑𝜌𝑑𝑥 = 0.         (17) 

Noting that 

−
𝜉

𝜏
∫ ∫ 𝑧(𝑥, 𝜌, 𝑡)

1

0

𝑧𝜌(𝑥, 𝜌, 𝑡)
Ω

𝑑𝜌𝑑𝑥 

= −
𝜉

2𝜏
∫ ∫

𝜕

𝜕𝜌
𝑧2(𝑥, 𝜌, 𝑡)

1

0Ω

𝑑𝜌𝑑𝑥 

=
𝜉

2𝜏
∫ (𝑧2(𝑥, 0, 𝑡) − 𝑧2(𝑥, 1, 𝑡))𝑑𝑥
Ω

 

=
𝜉

2𝜏
(∫ |𝑢𝑡|

2𝑑𝑥 − ∫ 𝑧2(𝑥, 1, 𝑡)
ΩΩ

𝑑𝑥).                                                          (18) 

Combining (16) and (17) and taking into consideration (18), we have 

𝐸′(𝑡) = −(𝜇1 −
𝜉

2𝜏
)∫ |𝑢𝑡(𝑥, 𝑡)|

2𝑑𝑥 −
𝜉

2𝜏
∫ |𝑧2(𝑥, 1, 𝑡)|
ΩΩ

𝑑𝑥 
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−
1

2
𝑔(𝑡)‖∆𝑢(𝑡)‖2 +

1

2
(𝑔′𝜊∆𝑢)(𝑡) − 𝜇2 ∫ 𝑢𝑡Ω

𝑧(𝑥, 1, 𝑡)𝑑𝑥,                          (19) 

for 𝑡 ∈ (0, 𝑇). 

Utilizing Young’s inequality, we estimate 

−𝜇2∫ 𝑧(𝑥, 1, 𝑡)𝑢𝑡(𝑥, 𝑡)
Ω

𝑑𝑥 ≤
|𝜇2|

2
∫ (|𝑢𝑡(𝑥, 𝑡)|

2 + |𝑧(𝑥, 1, 𝑡)|2)
Ω

𝑑𝑥. 

Hence, from (19), we have 

𝐸′(𝑡) ≤ −(𝜇1 −
𝜉

2𝜏
−
|𝜇2|

2
)∫ |𝑢𝑡(𝑥, 𝑡)|

2

Ω

𝑑𝑥 

−(
𝜉

2𝜏
−
|𝜇2|

2
)∫ |𝑧(𝑥, 1, 𝑡)|2

Ω

𝑑𝑥 

+
1

2
(𝑔′𝜊∆𝑢)(𝑡) −

1

2
𝑔(𝑡)‖∆𝑢‖2.                                                                (20) 

By using (14), for some 𝐶0 > 0, we obtain 

𝐸′(𝑡) ≤ −𝐶0∫ (|𝑢𝑡(𝑥, 𝑡)|
2 + |𝑧(𝑥, 1, 𝑡)|2)

Ω

𝑑𝑥 

+
1

2
(𝑔′𝜊∆𝑢)(𝑡) −

1

2
𝑔(𝑡)‖∆𝑢‖2 

≤ −𝐶0∫ (|𝑢𝑡(𝑥, 𝑡)|
2 + |𝑧(𝑥, 1, 𝑡)|2)

Ω

𝑑𝑥 ≤ 0. 

To get our main result, we have the following lemmas. 

Lemma 2. There exists a positive constant 𝐶 > 0 depending on Ω only such that 

(𝑘 ∫ |𝑢|𝑝

Ω

𝑙𝑛|𝑢|𝑑𝑥)

𝑠/𝑝

≤ 𝐶 [𝑘∫ |𝑢|𝑝

Ω

𝑙𝑛|𝑢|𝑑𝑥 + ‖∆𝑢‖2], 

for any 𝑢 ∈ 𝐻0
2(Ω) and 2 ≤ 𝑠 ≤ 𝑝, provided that ∫ |𝑢|𝑝

Ω
𝑙𝑛|𝑢|𝑘𝑑𝑥 ≥ 0. 

Proof. In Kafini and Messaoudi (2020), by Lemma 3.2 we know that 

(∫ |𝑢|𝑝

Ω

𝑙𝑛|𝑢|𝑘𝑑𝑥)

𝑠/𝑝

≤ 𝐶 [∫ |𝑢|𝑝

Ω

𝑙𝑛|𝑢|𝑘𝑑𝑥 + ‖∇𝑢‖2], 
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is satisfied, by using the Sobolev Embedding Theorem we get the result. 

Similar to Kafini and Messaoudi (2020) and by using the Sobolev Embedding Theorem, we have 

the following lemmas. 

Lemma 3. There exists a positive constant 𝐶 > 0 depending on Ω only such that 

‖𝑢‖2 ≤ 𝐶 [(𝑘 ∫ |𝑢|𝑝𝑙𝑛|𝑢|
Ω

𝑑𝑥)

2

𝑝
+ ‖∆𝑢‖2

4

𝑝],                                          (21) 

provided that ∫ |𝑢|𝑝
Ω

𝑙𝑛|𝑢|𝑘𝑑𝑥 ≥ 0. 

Lemma 4. There exists a positive constant 𝐶 > 0 depending on Ω only such that 

‖𝑢‖𝑝
𝑠 ≤ 𝐶[‖𝑢‖𝑝

𝑝 + ‖∆𝑢‖2],                                                                    (22) 

for any 𝑢 ∈ 𝐻0
2(Ω) and 2 ≤ 𝑠 ≤ 𝑝. 

3. BLOW UP RESULTS 

In this part, we prove the blow up of solutions in a finite time for the problem (12). 

Theorem 5. Assume that the condition (14) hold. Let 

{

2 ≤ 𝑝,               𝑖𝑓 𝑛 = 1,2,3,4,

2 ≤ 𝑝 ≤
2(𝑛 − 2)

𝑛 − 4
,   𝑖𝑓 𝑛 ≥ 5,

 

and  

𝐸(0) < 0.                                                                                                                   (23) 

Then the solution of (12) blows up in finite time. 

Proof. Reminding (15), we get 

𝐸(𝑡) ≤ 𝐸(0) < 0. 

Hence, 

𝐻′(𝑡) = −𝐸′(𝑡) = 𝐶0∫ (|𝑢𝑡|
2 + 𝑧2(𝑥, 1, 𝑡))𝑑𝑥

1

0

 

−
1

2
(𝑔′𝜊∆𝑢)(𝑡) +

1

2
𝑔(𝑡)‖∆𝑢‖2 
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≥ 𝐶0 ∫ 𝑧2(𝑥, 1, 𝑡)𝑑𝑥 ≥ 0,
1

0
                                                                                     (24) 

and 

0 < 𝐻(0) ≤ 𝐻(𝑡) ≤
𝑘

𝑝
∫ |𝑢|𝑝𝑙𝑛|𝑢|
Ω

𝑑𝑥.                                                                (25) 

We set 

𝐿(𝑡) = 𝐻1−𝛼(𝑡) + 𝜀 ∫ 𝑢𝑢𝑡
Ω

𝑑𝑥 +
𝜇1𝜀

2
∫ 𝑢2

Ω

𝑑𝑥,   𝑡 ≥ 0, 

where 𝜀 > 0 to be specified later and 

2(𝑝−2)

𝑝2
< 𝛼 <

𝑝−2

2𝑝
< 1.                                                                                            (26) 

Differentiating 𝐿(𝑡) with respect to 𝑡, we get 

𝐿′(𝑡) = (1 − 𝛼)𝐻−𝛼(𝑡)𝐻′(𝑡) + 𝜀‖𝑢𝑡‖
2 + 𝜀∫ 𝑢𝑢𝑡𝑡

Ω

𝑑𝑥 + 𝜇1𝜀 ∫ 𝑢𝑢𝑡
Ω

𝑑𝑥 

= (1 − 𝛼)𝐻−𝛼(𝑡)𝐻′(𝑡) + 𝜀‖𝑢𝑡‖
2 + 𝜀𝑘∫ |𝑢|𝑝𝑙𝑛|𝑢|

Ω

𝑑𝑥 − 𝜀‖∆𝑢‖2 

+𝜀 (∫ ∫ 𝑔(𝑡 − 𝑠)(∆𝑢(𝑠)∆𝑢(𝑡))𝑑𝑠𝑑𝑥
𝑡

0Ω
) − 𝜀𝜇2 ∫ 𝑢𝑧(𝑥, 1, 𝑡)

Ω
𝑑𝑥.                         (27) 

Thanks to Young’s inequality, we have  

−𝜀𝜇2 ∫ 𝑢𝑧(𝑥, 1, 𝑡)
Ω

𝑑𝑥 ≤ 𝜀|𝜇2| (𝛿 ∫ 𝑢2
Ω

𝑑𝑥 +
1

4𝛿
∫ 𝑧2
Ω

(𝑥, 1, 𝑡)𝑑𝑥) , ∀𝛿 > 0,      (28) 

and ∀ƞ > 0, 

∫ 𝑔(𝑡 − 𝑠)
𝑡

0

(∆𝑢(𝑠), ∆𝑢(𝑡))𝑑𝑠 = ∫ 𝑔(𝑡 − 𝑠)
𝑡

0

(∆𝑢(𝑠) − ∆𝑢(𝑡), ∆𝑢(𝑡))𝑑𝑠 

+∫ 𝑔(𝑡 − 𝑠)
𝑡

0

‖∆𝑢(𝑡)‖2𝑑𝑠 

≥ (1 −
1

4ƞ
) ∫ 𝑔(𝑠)𝑑𝑠

𝑡

0
‖∆𝑢(𝑡)‖2 − ƞ(𝑔𝜊∆𝑢)(𝑡).                                                     (29) 

Inserting (28) and (29) into (27), we have 

𝐿′(𝑡) ≥ [(1 − 𝛼)𝐻−𝛼(𝑡) −
𝜀|𝜇2|

4𝛿𝐶0
]𝐻′(𝑡) + 𝜀‖𝑢𝑡‖

2 + 𝜀𝑘∫ |𝑢|𝑝𝑙𝑛|𝑢|
Ω

𝑑𝑥 
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+𝜀 ((1 −
1

4ƞ
)∫ 𝑔(𝑠)𝑑𝑠

𝑡

0

− 1)‖∆𝑢‖2 

−𝜀ƞ(𝑔𝜊∆𝑢)(𝑡) − 𝜀𝛿|𝜇2|‖𝑢‖
2.                                                    (30) 

By taking 𝛿 so that |𝜇2|/4𝛿𝐶0= κ𝐻−𝛼(𝑡), for large 𝜅 to be specified later and substituting in 

(30), we obtain  

𝐿′(𝑡) ≥ [(1 − 𝛼) − 𝜀𝜅]𝐻−𝛼(𝑡)𝐻′(𝑡) + 𝜀‖𝑢𝑡‖
2 

+𝜀 ((1 −
1

4ƞ
)∫ 𝑔(𝑠)𝑑𝑠

𝑡

0

− 1)‖∆𝑢‖2 

−𝜀ƞ(𝑔𝜊∆𝑢)(𝑡) −
𝜀|𝜇2|

2

4𝜅𝐶0
𝐻𝛼(𝑡)‖𝑢‖2 

+𝜀𝑘∫ |𝑢|𝑝𝑙𝑛|𝑢|
Ω

𝑑𝑥. 

For 0 < 𝛼 < 1, we get 

𝐿′(𝑡) ≥ [(1 − 𝛼) − 𝜀𝜅]𝐻−𝛼(𝑡)𝐻′(𝑡) 

+(𝜀 − 𝜀(1 − 𝛼))𝑘∫ |𝑢|𝑝𝑙𝑛|𝑢|
Ω

𝑑𝑥 + 𝜀
𝑝(1 − 𝑎) + 2

2
‖𝑢𝑡‖

2 

+𝜀 ((1 −
1

4ƞ
−
𝑝(1 − 𝑎)

2
)∫ 𝑔(𝑠)𝑑𝑠

𝑡

0

+
𝑝(1 − 𝑎) − 2

2
)‖∆𝑢‖2 

−
𝜀|𝜇2|

2

4𝜅𝐶0
𝐻𝛼(𝑡)‖𝑢‖2 + 𝜀𝑝(1 − 𝑎)𝐻(𝑡) 

+
𝜀𝑘(1 − 𝑎)

𝑝
‖𝑢‖𝑝

𝑝 + 𝜀 (−ƞ +
𝑝(1 − 𝑎)

2
) (𝑔𝜊∆𝑢)(𝑡) 

+
𝜀(1−𝑎)𝑝𝜉

2
∫ ∫ 𝑧2(𝑥, 𝜌, 𝑡)𝑑𝜌𝑑𝑥.

1

0Ω
                                                          (31) 

Thanks to (21) and (25), we obtain 

𝐻𝛼(𝑡)‖𝑢‖2
2 ≤ (∫ |𝑢|𝑝𝑙𝑛|𝑢|𝑘

Ω

𝑑𝑥)

𝛼

‖𝑢‖2
2 
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≤ [(|𝑢|𝑝𝑙𝑛|𝑢|𝑘𝑑𝑥)
𝛼+

2
𝑝 + (|𝑢|𝑝𝑙𝑛|𝑢|𝑘𝑑𝑥)𝛼‖∆𝑢‖2

4
𝑝]. 

By using Young’s inequality, we have 

𝐻𝛼(𝑡)‖𝑢‖2
2 ≤ (∫ |𝑢|𝑝𝑙𝑛|𝑢|𝑘

Ω

𝑑𝑥)

𝛼

‖𝑢‖2
2 

≤ [(∫ |𝑢|𝑝𝑙𝑛|𝑢|𝑘

Ω

𝑑𝑥)

(𝑝𝛼+2)
𝑝

+
2

𝑝
‖∆𝑢‖2 +

𝑝 − 2

𝑝
(∫ |𝑢|𝑝𝑙𝑛|𝑢|𝑘

Ω

𝑑𝑥)

𝛼𝑝
(𝑝−2)

]. 

Therefore, we obtain  

𝐻𝛼(𝑡)‖𝑢‖2
2 ≤ (∫ |𝑢|𝑝𝑙𝑛|𝑢|𝑘

Ω

𝑑𝑥)

𝛼

‖𝑢‖2
2 

≤ 𝐶 [(∫ |𝑢|𝑝𝑙𝑛|𝑢|𝑘

Ω

𝑑𝑥)

(𝑝𝛼+2)
𝑝

+ ‖∆𝑢‖2 + (∫ |𝑢|𝑝𝑙𝑛|𝑢|𝑘

Ω

𝑑𝑥)

𝛼𝑝
(𝑝−2)

], 

where C=max{
2

𝑝
,
𝑝−2

𝑝
}. 

From (26), we have 

2 < 𝛼𝑝 + 2 ≤ 𝑝 𝑎𝑛𝑑 2 <
𝛼𝑝2

𝑝 − 2
≤ 𝑝. 

Hence, Lemma 2 provides 

𝐻𝛼(𝑡)‖𝑢‖2
2 ≤ 𝐶 (𝑘 ∫ |𝑢|𝑝𝑙𝑛|𝑢|𝑘

Ω
𝑑𝑥 + ‖∆𝑢‖2

2).                                  (32) 

Combining (31) and (32), we obtain 

𝐿′(𝑡) ≥ [(1 − 𝛼) − 𝜀𝜅]𝐻−𝛼(𝑡)𝐻′(𝑡) + 𝜀 (𝑎 −
𝐶|𝜇2|

2

4𝜅𝐶0
)∫ |𝑢|𝑝𝑙𝑛|𝑢|𝑘

Ω

𝑑𝑥 

+𝜀 ((1 −
1

4ƞ
−
𝑝(1 − 𝑎)

2
)∫ 𝑔(𝑠)𝑑𝑠

𝑡

0

+
𝑝(1 − 𝑎) − 2

2
−
𝐶|𝜇2|

2

4𝜅𝐶0
)‖∆𝑢‖2 

+𝜀 (−ƞ +
𝑝(1 − 𝑎)

2
) (𝑔𝜊∆𝑢)(𝑡) + 𝜀

𝑝(1 − 𝑎) + 2

2
‖𝑢𝑡‖

2 + 𝜀
𝑘(1 − 𝑎)

𝑝
‖𝑢‖𝑝

𝑝
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+𝜀𝑝(1 − 𝑎)𝐻(𝑡) + 𝜀
(1−𝑎)𝑝𝜉

2
∫ ∫ 𝑧2(𝑥, 𝜌, 𝑡)𝑑𝜌𝑑𝑥.

1

0Ω
                                            (33) 

Now, we choose 𝑎 > 0 so small that 

𝑝(1 − 𝑎) + 2

2
> 0, 

And 𝜅 so large that 

(1 −
1

4ƞ
−
𝑝(1 − 𝑎)

2
)∫ 𝑔(𝑠)𝑑𝑠

𝑡

0

+
𝑝(1 − 𝑎) − 2

2
−
𝐶|𝜇2|

2

4𝜅𝐶0
> 0, 

and  

{
 

 𝑎 −
𝐶|𝜇2|

2

4𝜅𝐶0
> 0,

−ƞ +
𝑝(1 − 𝑎)

2
> 0.

 

Once 𝜅 and 𝑎 are fixed, we choose 𝜀 so small so that 

(1 − 𝛼) − 𝜀𝜅 > 0, 

𝐻(0) + 𝜀∫ 𝑢0𝑢1
Ω

𝑑𝑥 > 0. 

Thus, for some  𝜆 > 0, the estimate (33) becomes 

𝐿′(𝑡) ≥ 𝜆[𝐻(𝑡) + ‖𝑢𝑡‖
2 + ‖∆𝑢‖2 + (𝑔𝜊∆𝑢)(𝑡) + ‖𝑢‖𝑝

𝑝] 

+𝜆 [∫ ∫ 𝑧2(𝑥, 𝜌, 𝑡)𝑑𝜌𝑑𝑥 + 𝑘 ∫ |𝑢|𝑝𝑙𝑛|𝑢|𝑘
Ω

𝑑𝑥
1

0Ω
]                                        (34) 

and 

𝐿(𝑡) ≥ 𝐿(0) > 0, 𝑡 ≥ 0.                                                                                (35) 

Next, using Hölder’s inequality and the embedding ‖𝑢‖2 ≤ 𝐶‖𝑢‖𝑝, we obtain 

∫ 𝑢𝑢𝑡
Ω

𝑑𝑥 ≤ ‖𝑢‖2‖𝑢𝑡‖2 ≤ 𝐶‖𝑢‖𝑝‖𝑢𝑡‖2, 

and exploiting Young’s inequality, we have 

|∫ 𝑢𝑢𝑡Ω
𝑑𝑥|

1/(1−𝛼)

≤ 𝐶 (‖𝑢‖𝑝

𝜇

(1−𝛼) + ‖𝑢𝑡‖2

𝜃

(1−𝛼)) , 𝑓𝑜𝑟
1

𝜇
+

1

𝜃
= 1.                (36) 
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By using Lemma 4, we take 𝜃 = 2(1 − 𝛼)  which satisfies 
𝜇

(1−𝛼)
=

2

(1−2𝛼)
≤ 𝑝.  Therefore, for 

𝑠 =
2

(1−2𝛼)
, estimate (36) yields 

|∫ 𝑢𝑢𝑡Ω
𝑑𝑥|

1/(1−𝛼)

≤ 𝐶(‖𝑢‖𝑝
𝑠 + ‖𝑢𝑡‖2

2). 

Thus, Lemma 4 gives 

|∫ 𝑢𝑢𝑡Ω
𝑑𝑥|

1/(1−𝛼)

≤ 𝐶[‖∆𝑢‖2 + ‖𝑢𝑡‖2
2 + ‖𝑢‖𝑝

𝑝].                            (37) 

Hence, 

𝐿1/(1−𝛼)(𝑡) = (𝐻1−𝛼(𝑡) + 𝜀 ∫ 𝑢𝑢𝑡
Ω

𝑑𝑥 +
𝜇1𝜀

2
∫ 𝑢2

Ω

𝑑𝑥)

1/(1−𝛼)

 

≤ 𝐶 [𝐻(𝑡) + |∫ 𝑢𝑢𝑡
Ω

𝑑𝑥|

1/(1−𝛼)

+ ‖𝑢‖2
2/(1−𝛼)

] 

≤  𝐶 [𝐻(𝑡) + |∫ 𝑢𝑢𝑡
Ω

𝑑𝑥|

1/(1−𝛼)

+ ‖𝑢‖𝑝
2/(1−𝛼)

] 

≤ [𝐻(𝑡) + ‖∆𝑢‖2 + ‖𝑢𝑡‖
2 + ‖𝑢‖𝑝

𝑝], 𝑡 ≥ 0.                                          (38) 

Combining (34) and (38), we get 

𝐿′(𝑡) ≥ Ʌ𝐿
1

(1−𝛼)(𝑡), 𝑡 ≥ 0,                                                                       (39) 

where Ʌ is a positive constant depending only on 𝜆 and 𝐶. 

An integration of (39) over (0, 𝑡) yields 

𝐿𝛼/(1−𝛼)(𝑡) ≥
1

𝐿
−

𝛼
(1−𝛼)(0) −

Ʌ𝛼𝑡
(1 − 𝛼)

. 

Thus,  𝐿(𝑡) blows up in time  

𝑇 ≤ 𝑇∗ =
1 − 𝛼

Ʌ𝛼𝐿
𝛼

(1−𝛼)(0)
. 

As a result, the solution of problem (12) blows up in finite time 𝑇∗ and 𝑇∗ ≤
1−𝛼

Ʌ𝛼𝐿
𝛼

(1−𝛼)(0)

. 

ISSN 2688-8300 (Print) ISSN 2644-3368 (Online) JMSCM, Vol.3, No.2, January, 2022

179 Journal of Mathematical Sciences & Computational Mathematics



CONCLUSIONS 

Recently, there has been published much work concerning the wave equations (Kirchhoff, 

Petrovsky, Bessel,... etc.) with different state of delay time (constant delay, time-varying delay,... 

etc.). However, to the best of our knowledge, there were no blow-up of solutions for the 

logarithmic viscoelastic plate equation with delay term. Under suitable conditions, we have been 

proved the blow-up of solutions. 
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