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Abstract

In this paper we extend and generalize the classical Banach’s contraction principle and Edelstein’s
contraction theorem on a Revised fuzzy metric spaces endowed with a binary relation.
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1. Introduction

The concept of fuzzy set was initiated by Zadeh [18]. Thereafter, it was developed extensively
by many authors which also include interesting applications of this theory in diverse areas.
George and Veeramani [9] modified the concept of fuzzy metric space introduced by Kramosil
and Michalek [11]. The origin of fixed point theory in fuzzy metric spaces is often traced back to
the paper of Grabiec [10] wherein he extended classical fixed point theorems of Banach and
Edelstein to complete and compact fuzzy metric spaces respectively. Very recently Alam and
Imdad [2] presented new variant of classical Banach contraction principle on a complete metric
space endowed with a binary relation which, under universal relation reduces to Banach
contraction principle. Many authors proved fixed point theorems in fuzzy metric space including
[3]-[6]. Then Muraliraj.A and Thangathamizh.R [13] first introduce the existence of fixed point
sets in the fuzzy metric space, which were revised in 2021 based on t-conorm. Muraliraj.A and
Thangathamizh.R [14] later prove the Banach and Edelstein contractions in the revised fuzzy
metric space. In 2021, Muraliraj.A and Thangathamizh.R [15] introduce the concept of Revised
fuzzy modular metric.

The aim of this paper is to extend and generalize the, Banach contraction principle to a complete
Revised fuzzy metric space and Edelstein contraction theorem to a compact Revised fuzzy
metric space endowed with a binary relation to the contractive conditions which are relatively
weaker than usual contraction as it is required to hold only on those elements which are related
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under the underlying relation rather than the whole space. We extend and generalize the results
of Alam and Imdad [2] and Grabiec [12].

2. Preliminaries
To initiate the concept of Revised fuzzy metric space, which was introduced by Alexander

Sostak [1] in 2018 is recalled here.
Definition 2.1: [17]

A binary operation @:[0,1] x [0,1] - [0,1] is a t-conorm if it satisfies the following
conditions:

a) @ is associative andcommutative,

b) @ is continuous,

C) a®0= aforallace [0,1],

d a®b < cddwhenevera < candb < dforalla,b,c,d € [0,1].
Examples 2.2: [17]

i.Lukasievicz t-conorm: a @ b = max{a, b}

ii.Product t-conorm: a®b = a+b—ab

iii.Minimum t-conorm: a® b = min(a+b, 1)

Definition 2.3: [1]

A Revised fuzzy metric space is an ordered triple (X, u, ®) such that X is a nonempty set, @ is a
continuous t-conorm and p is a fuzzy set on X x X x (0,0) — [0,1] satisfies the following
conditions: Vx,y,z € X and s,t > 0

(RGVYL) u(x,y,t) <1,vt> 0

(RGV2) u(x,y,t) = Oifandonlyifx = y,t > 0
(RGV3) u(x,y,t) = u(y, x,t)

(RGV4) u(x,z,t + s) < ulx,y,t) ®u(y, z:s)
(RGV5) u(x,y,—): (0,00) = [0,1) is continuous.
Then u is called a Revised fuzzy metric on X.

Example 2.4: [1]
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Let (X,d) be a metric space. Define a @ b = max{a, b} for all a,b € [0,1], and define u :
X x X X (0,00) > [0,1] as

d(x,y)

plx,y, t) = m

Vx,y,z € X and t > 0. Then (X, u, ®) is a Revised fuzzy metric space.
Definition 2.5: [1]

Let (X, u, ®) be a Revised fuzzy metric space, for t > 0 the open ball B(x,r,t) with a centre
x € X and a radius 0 < r < 1 is defined by

B(x,r,t) = {yeX:ulx,yt) <r}.

A subset A c X is called open if for each x € A, there exist t > 0 and 0 <r < 1such
that B(x,r,t) < A. Let T denote the family of all open subsets of X. Then 7 is topology on X,
called the topology induced by the Revised fuzzy metric u. We call this fuzzy metric induced by
the metric d as the standard Revised fuzzy metric.

Definition 2.6: [13]
Let (X, u, ®) be a Revised fuzzy metric space,
1. A sequence {x,} in X is said to be convergent to a point x € X if

lim,_u(x,y,t) = 0 forallt > 0.
2. A sequence {x,} in X is called a Cauchy sequence, if for each0 <e < 1andt > 0, there
exists ny € N such that u (x,,, x,,,,t) < € foreachn,m >n,
3. A Revised fuzzy metric space in which every Cauchy sequence is convergent is said to be
complete.

4. A Revised fuzzy metric space in which every sequence has a convergent subsequence is said
to be compact.

Lemma 2.7: [13]
Let (X,u, @) be a Revised fuzzy metric space. For all u,v € X, u(u,v,—) is non-increasing
function.

Definition 2.8.

Let (X, u, @®) be a Revised fuzzy metric space. u is said to be continuous on X% x (0, ) if

lim
U, Yo tn) = p(x,y,t),

n — oo
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whenever {(x,, v, t,)} is a sequence in X2 x (0,c0) which converges to a point (x,y,t) €
X? x (0,00); i.e.,

lim lim lim
n o 0o HOmx,t) = 75 u(yy,t) = 0and "5 pCxy,ta) = pix,y,0).
Definition 2.9.
lim lim
Let ln X, = xand ln Yn = x. Then

li
(2.9.1) n l_)moo uCxn, v, t) < u(x,y,t) forallt> 0;

lim
— 00 H

(2.9.2) If u(x,y,—) is continuous, then n X Vo t) < u(x,y,t) forallt > 0.

Definition 2.10. [12]

Let X be a nonempty set. A subset R of X2 is called a binary relation on X. Notice that for each
pair x,y € X, one of the following conditions hold:

() (x,¥) € R; which amounts to saying that “x is R-related to y” or “x relates to y under R”.
Sometimes, we write xRy instead of (x,y) € R;

(i) (x,y) € R; which means that “x is not R-related to y” or “x does not relate to y under R”.

Trivally, X2 and ¢ being subsets of X2 are binary relations on X, which are respectively called
the universal relation (or full relation) and empty relation.

Throughout this paper, R stands for a nonempty binary relation, but for the sake of simplicity, we
write only “binary relation” instead of “nonempty binary relation.”

Definition 2.11. [2]

Let R be a binary relation defined on a nonempty set X and x,y € X. We say that x and y are
R-comparative if either (x,y) € Ror (y,x) € R. Wedenote it by [x,y] € R.

Definition 2.12. [2]
Let X be a nonempty set and R a binary relation on X.

(i) The inverse transpose or duel relation of R, denoted by R™1, is defined by
R™1={(x,y) € X2: (y,x) € R}.

(ii) The symmetric closure of R, denoted by RS, is defined to be the set R U R~ (i.e., R :=
R U R™1). Indeed, R* is the smallest symmetric relation on X containing R.

Proposition 2.13 [3]

For a binary relation R defined on a nonempty set X,
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(x,y) € R° & [x,y] € R.
Proof.
The observation is straightforward as
(x,y) € RS & (x,y) € RUR™?
& (x,y) € Ror (x,y) € R
& (x,y) € Ror(y,x) € RS [x,y] € R U R
Definition 2.14. [2]

Let X be a nonempty set and R a binary relation on X.A sequence {x,,} < X is called R-
preserving if

(Xp,Xpn41) €E R Vn € N,.
Definition 2.15.

Let (X, u, ®) be a Revised fuzzy metric space. A binary relation R defined on X is called d-self-
closed if whenever {x,} is an R-preserving sequence and x,, — x. then there exists a
subsequence {xy, } of {x,} with [x, ,x] € R forall k € N,.

Definition 2.16. [2]

Let X be a nonempty set and T a self mapping on X. A binary relation R defined on X is called
T -closed if forany x,y € X,

(x.y) € R > (Tx,Ty) € R.
Proposition 2.17. [2]
Let X, T and R be the same as in definition 14. If R is T -closed, then R® is also T -closed.
Definition 2.18. [2]

Let X be a nonempty set and R a binary relation on X. A subset E of X is called R-directed if for
each x,y € E,thereexistsz € X suchthat (x,z) € Rand (y,z) € R.

Definition 2.19. [2]

Let X be a nonempty set and R a binary relation on X. For x,y € X, a path of length k (where k
is a natural number) in R from x to y is a finite sequence {z,, zy, z,, ..., 2z} € X satisfying the
following conditions:

() zg = xand z, = vy,
(ii) (z;,z;41) € Rforeachi(0 < i < k — 1).

Notice that a path of length k involves k + 1 elements of X, although they are not distinct.
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In this paper, we use the following notations:
() F(T ) = The set of all fixed points of T,
(i) X(T; R):={x € X: (x,Tx) € R},
(iii) Y(x,y,R) := The class of all paths in R from x to y.
3. Main Results
In order to establish our main result, we first prove the following proposition:
Proposition 3.1.

If (X, 1, ®) is a Revised fuzzy metric space, R is a binary relation on X, T is a self-mapping on X,
0 <k<1andt >0, then the following contractivity conditions are equivalent:

(M) u(T x, Ty, kt) <u(x,y,t) Vx,y € X with (x,y) € R,
(i) w(T x, Ty, kt) < u(x,y, t) Vx,y € X with [x,y] € R.
Proof.

The implication (ii) = (i) is trivial. Conversely, suppose that (i) holds. Take x,y € X with
[x,y] € R, then (ii) directly follows from (i). Otherwise, if (y,x) € R then using the symmetry
of u and (i), we obtain

w(T x, Ty, kt) = p(Ty,T x,kt) < u(y,x,t) = ulx,y,t).
This shows that (i) = (ii).
Theorem 3.2. Revised fuzzy Banach contraction principle

Let (X, u, ®) be a complete Revised fuzzy metric space with ; limoo u(x,y,t) = 0 forall

x,y € X, Rabinary relation on X and T a self mapping on X. Suppose that the following
conditions hold:

(@) X(T ; R) is non empty,
(b) Ris T -closed,
(c) either T is continuous or R is d-self closed.
(d)
u(T x, Ty, kt) < u(x,y,t) Vx,y € Xwith (x,y) € R
where0 < k < landt > 0.

Then T has a fixed point. Moreover, if
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(e) Y(x,y, R®) is non empty, for each x,y € X, then T has a unique fixed point.
Proof.
Let X0 be an ordinary point of X(T, R). Define an iterative sequence {x,} by

Xp = T™(xp)or xpsq = Tx, Vn € N,. As (x,,Tx,) € R, using assumption (b), we
obtain

(Txo, T 2xq), (T 2x0,T 3x¢),..., (T "x, T "*1x,) € R
so that
(Xn,Xn41) € RV €N, 1)
Thus the sequence {x,} is R-preserving. Applying the contractive condition (d) to (1),

we deduce for n € N,, that
t
H(Txn' Txn+1J kt) = ,u(xn+1, Xn+2, kt) Su (TXOJ Txy, F)

= u (xl,xz,#) foralln € Njandt > 0.
Thus for any positive integer p, we have

p(Txp, Txp+p, t) = p(xXn41s Xn+p+1 t)

Ne (@ t
su (xn+1l xn+2:2_?> @ ( ) Du (xn+p: Xn+p+1s 5)

t t
<u (xl,xz,pw> D...0u (xl,xz, W)
since u(x,y,t) » 0ast — oo we get
lim

. w(Txp, Txppt) < 0 ... 00 = 0

which implies that the sequence {x,,} is Cauchy, hence convergent. so there exists such that

lim _
X, = X.
n — oo
Now assume that T is continuous, we have x € X
lim lim
X = Tx, =Tx
n — oo n+1 n— oo n

Owing to the uniqueness of limit, we obtain T x = x, i.e., x is a fixed point of T'.

Now let us assume that R is d-self-closed. As {x,} is R-preserving sequence and
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lim
X, = X
n — oo

there exists a subsequence {x,, } of {x,} with
[Xn,,X] € R Vk €Ny,

. ... lim
Using (d) and proposition (17), [x,,,x] € R and o o0 Xn

. x. we obtain

U (xnk+1,T X, kt) =u (Txnk,T X, kt) < p(xp,xt) > 0ask - oo,

. lim
e, Ho Oou(xnk,x t) =0

so that

nli_)moo Xn1 = T X,
Again owing to the unigueness of limit, we obtain
Tx = x
so that x is a fixed point of T.
To prove uniqueness, let us take x,y € F(t),
ie., Tx) =x&T () =y (2)

By assumption (e), there exists a path (say{z,, z, 2, ... z,}) of some finite length r in RS from x
to y so that

Zo= X, Zr = V,12,Zi41] € R foreach i(0 < i <r — 1) (3)
As R is T -closed, by using proposition (17), we have
[T"z;,T"z;41] € R foreach i(0 < i < r — 1)andforeachn € N, 4)
Now making use of (2), (3), (4), RFm-4, assumption (d) and proposition 17, we obtain
M(x,y,t) = M(T x,Ty,t)
= M(T z,,T z,,t)
= u(T"zy, T"z,,t)

< u (T2, Tz, ) & u(Trz, Tz, ) ®...0u (T Zp_y, T" zr,p)

<u (ZO,Zl, ) &) ,U(ZO'Zl' ) ©...0u (ZO’Zl'pr”)

<000 ...©60
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=0
so that x = y. Hence T has a unique fixed point. _
If R is complete or X is R®-directed, then the following consequence is worth recording:
Corollary 3.3.

Theorem (3.2) remains true if we replace condition (e) by one of the following conditions
(besides retaining the rest of the hypothesis):

(e') R is complete
(e") X is Re-directed.
Proof.

If R is complete, then for each x,y € X, [x,y] € R, which amounts to saying that {x, y} is a
path of length 1 in RS from x to y so that Y(x, y, R®) is nonempty. Hence Theorem 3.2 gives rise
to the conclusion.

Otherwise, if X is R*-directed, then for each x,y € X, there exists z € X such that [x,z] € R
and [y,z] € R sothat {x,z, y} is a path of length 2 in RS from x to y. Hence Y(x, y,R®) is
nonempty, for each x,y € X and again by Theorem 3.2 the conclusion is immediate.

Theorem 3.4. Revised Fuzzy Edelstein contraction theorem:

Let (X, u, ®) be a compact Revised fuzzy metric space with u(x, y, —) continuous for all
x,y € X, Rabinary relation on X and T a self mapping on X. Suppose that the following
conditions hold:

(@) X(T,R) is non empty,

(b) Ris T -closed,

(c) either T is continuous or R is d-self closed.

(d) u(T x, Ty, t) < u(x,y,t)Vx,y € X with (x,y) € R&x#y&t > 0.
Then T has a fixed point. Moreover, if

(e) Y(x,y, R®) is non empty, for each x,y € X, then T has a unique fixed point.
Proof.

Let x, be an ordinary point of X(T,R). Define an iterative sequence {x,} by x, = T"(x,,) or
Xns1 = Tx,, ¥V € Ny. As (x,Txy) € R, using assumption (b), we obtain

(T x0,T? x0), (T? x0, T3 x¢),... (T™ x9, T"*1 x,) € R

so that
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(xn'xn+1) € RVn € NO
Thus the sequence {x,,) is R-preserving.

Now since X is compact, {x,} has a convergent subsequence {xni}

Let llTn Xn;, = x. Now assume that T is continuous, we have
ll:n X, = T x (5)
Lim Xp = T?x (6)

As (xn, T xp,) € R. Now observe that
O T Xng1,t) < (T 2, T?xp,t) <o+ < pu(x, T Xy, 1)
< U(T X, T?xp 0 t) <o <Xy, T Xy, 5 1)
< (T xn,,, T?xp,, ,£) <---< O,¥VL > 0.

Thus {u(xy,, T %, , )} and {u(T x,,, , T?xy,, . t)} (¢ > 0) are convergent to a common limit.
So by (5),(6) and (2.9.2) we get

p(x, T x,t) = p(limx,,T limx,,,t)
= lim p(xy,,, T xni, t)
= lim p (T %, T?xp,, t)
= u(limTx,, ,limT?x,,,t)
= u(T x,T?x,t)
forall t > 0. Now suppose x # T x. Then by (d), we have
u(x,Tx,t) < u(T x.T?x,t),t > 0
which is a contradiction. Hence x =T, i.e., X is a fixed point of T.

Now assume that R is d-self-closed. As {x,} is an R-preserving sequence and

lim

. oo{xn} = x, there exists a sequence {x, } of {x,} with [x,,x] € RVi € N

using (d), proposition 3.1, [x,,x] € R and ; 1_i>moo x; = x, we obtain

,u(xniH,Tx,t) = ,u(Txni,Tx,t) > ,u(xni,x, t) > 0asi »
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Thus Xnyy > Tx

Owing to the uniqueness of limit, we obtain T x = x. so that x is a fixed point of T. Uniqueness
follows from (d).
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