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1. INTRODUCTION 

The concept of fuzzy sets was first initiated by Zadeh [27]with a concept to delegate the 

vagueness in regular life laid the path to the amplification of fuzzy mathematics. Many 

researchers and mathematicians have developed, extended ,studied and kept up the theory of 

fuzzy sets and its applications, namely George and Veeramani[4,5] , Kramosil and Michalek 

[11], Grabiec[6],Fuller [3],Gregori and Sapena [7],Imdad, Ali and Hasan [8],Mihet [14], 

Sastry,Naidu and Krishn [17],Schweizer [18],Bratney and Odeh [13],Romaguera ,Sapena and 

Tirado [16],Shirude and Aage [21], Steimann [23], Vijayaraju and Sajath [25], Singh and Jain 

[22] Subrahmanyam [24], Jungck [9], Amari and Moutawakil [1], Mujahid Abbas  [2], 

Sedghi,et.al.[19],  Khan [10], Shen,et.al.[20], Wairojjana, et.al. [26] and Manthena and Manchala 

[12] recently proved common fixed point theorems in fuzzy metric space using property E.A. 

2. PRELIMINARIES 

Definition 2.1. [18]𝐴 𝑏𝑖𝑛𝑎𝑟𝑦 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 ∗ ∶ [0,1] ×  [0,1]  →  [0,1] 𝑖𝑠 𝑎 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 𝑡 −

𝑛𝑜𝑟𝑚 𝑖𝑓 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑝, 𝑞, 𝑟, 𝑠 ∈  [0,1], 𝑡ℎ𝑒 𝑓𝑜𝑙𝑙𝑜𝑤𝑖𝑛𝑔 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 𝑎𝑟𝑒 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑑: 

(2.11)              𝑝 ∗ 1 = 𝑝, 

(2.1.2)         𝑝 ∗ 𝑞 = 𝑞 ∗ 𝑝, 

(2.1.3)              𝑝 ∗ 𝑞 ≤ 𝑟 ∗ 𝑠 𝑤ℎ𝑒𝑛𝑒𝑣𝑒𝑟 𝑝 ≤ 𝑟 𝑎𝑛𝑑 𝑞 ≤ 𝑠, 
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(2.14)               𝑝 ∗ (𝑞 ∗ 𝑟) = (𝑝 ∗ 𝑞) ∗ 𝑟. 

Definition 2.2  [4] The 3-tuple (X, M, *) is called a fuzzy metric space if X is an arbitrary set, * 

is a continuous t-norm and M is a fuzzy set in X × X × (0, ∞) satisfying the following conditions:  

(2.2.1)    𝑀(𝑥, 𝑦, 𝑡) > 0, 

(2.2.2)    𝑀(𝑥, 𝑦, 𝑡) = 1 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 > 0 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 𝑥 = 𝑦, 

(2.2.3)      𝑀(𝑥, 𝑦, 𝑡) =  𝑀(𝑦, 𝑥, 𝑡), 

(2.2.4)      𝑀(𝑥, 𝑧, 𝑡 + 𝑠) ≤ 𝑀(𝑥, 𝑦, 𝑡) ∗  𝑀(𝑦, 𝑧, 𝑠), 

(2.2.5)     𝑀(𝑥, 𝑦, . ): (0,∞) → (0,1]𝑖𝑠 𝑎 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥, 𝑦, 𝑧 ∈ X and t, s > 0.  

Lemma 2.1. [6]  𝑀(𝑥, 𝑦, . ) 𝑖𝑠 𝑛𝑜𝑛 𝑑𝑒𝑐𝑟𝑒𝑎𝑠𝑖𝑛𝑔 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥, 𝑦 ∈ X.  

Definition 2.3.  [4], [7] Let 𝑀(𝑋,𝑀,∗) 𝑏𝑒 𝑎 𝑓𝑢𝑧𝑧𝑦 𝑚𝑒𝑡𝑟𝑖𝑐 𝑠𝑝𝑎𝑐𝑒. 

(2.3.1)   𝐴 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 {𝑥𝑛} in X is a M-Cauchy sequence if for all ℇ ∈ (0,1), t > 0 there exists              

n0 ∈ N such that  M (xn, xm, t) > 1 - ℇ for all n, m ≥ n0, 

(2.3.2)  𝐴 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 {𝑥𝑛} in X is convergent to x ∈ X if  lim
𝑛 →∞

(𝑥𝑛 , 𝑥, 𝑡) = 1, 𝑡 > 0, 

(2.3.3)  A fuzzy metric space X is M-complete if every M-Cauchy sequence in X is convergent. 

Definition 2.4. [22] Two self-mappings P and Q on a fuzzy metric space (X, M, *) are said to be 

compatible if  lim
𝑛 →∞

𝑀(𝑃𝑄𝑥𝑛 , 𝑄𝑃𝑥𝑛 , 𝑡) = 1, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 > 0, whenever {𝑥𝑛} is a sequence in X such 

that lim
𝑛→∞

𝑃𝑥𝑛 =  lim
𝑛→∞

𝑄𝑥𝑛 = 𝑥 ∈ X. 

Definition 2.5. [22] Two self-maps P and Q of a fuzzy metric space (X, M, *) are said to be 

weakly compatible if they commute at their coincidence points; i.e., Px = Qx for some  𝑥∈ X 

implies that PQx = QPx. 

Remark 2.1 Two compatible self-mappings are weakly compatible, but the converse is not true.( 

see example 2.16 of [22]). 

Definition 2.6. [2] A Pair of self-maps (P,Q) on a fuzzy metric space (X, M, *) satisfies the 

property E.A. if there exists a sequence {𝑥𝑛}  in X such that lim  
𝑛→∞

𝑀(𝑃𝑥𝑛 , 𝑥, 𝑡) =

lim
𝑛→∞

𝑀(𝑄𝑥𝑛 , 𝑥, 𝑡) = 1 for some 𝑥 ∈ X and all t > 0. 

Remark 2.2 it is noted that weak compatibility and E.A. property are independent to each other. 

(see [15], example 2.1 and example 2.2 ).  
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Definition 2.7. [26] A function ∅ : [0,1] → [0,1] is called an altering distance function if it 

satisfies the following properties: 

(2.7.1) ∅ is strictly decreasing and continuous; 

(2.7.2) ∅ (λ) = 0 if and only if λ = 1. 

It is obvious that lim
𝜆→1

∅(𝜆) =  ∅(1) = 0. 

3. MAIN RESULTS 

Theorem 3.1. Let (𝑋,𝑀,∗) be a fuzzy metric space and S2 , S1 be weakly compatible self maps 

of X satisfying the following property  

∅(𝑀(𝑆2𝑥, 𝑆2𝑦, 𝑡 ))  

≤  𝛼1(𝑡) 𝑀𝑖𝑛{∅{

𝑀(𝑆1𝑥, 𝑆2𝑥, 𝑡 )𝑀(𝑆1𝑦, 𝑆2𝑦, 𝑡 )

𝑀(𝑆1𝑥, 𝑆1𝑦, 𝑡 )
,
𝑀(𝑆1𝑥, 𝑆2𝑦, 𝑡 )𝑀(𝑆1𝑦, 𝑆2𝑥, 𝑡 )

𝑀(𝑆1𝑥, 𝑆1𝑦, 𝑡 )
, 𝑀(𝑆2𝑥, 𝑆1𝑥, 𝑡 ),

𝑀(𝑆1𝑦, 𝑆2𝑦, 𝑡 ),𝑀(𝑆1𝑥, 𝑆1𝑦, 𝑡 ) 

}} 

+ 𝛼2(𝑡) (∅(𝑀(𝑆2𝑥, 𝑆1𝑦, 2𝑡 )))                        ... 3.1.1 

Where x, y ∈ X, 𝛼1, 𝛼2 : (0,∞) → (0,1), t > 0 and ∅ is an altering distance function. If S2 and S1 

satisfy the property E.A. and the range of S1 is a closed subspace X, then S2 and S1 have a unique 

common fixed point in X. 

Proof: Suppose that S2 and S1 satisfy the property E.A., then there exists a sequence {𝑥𝑛} in X 

such that 

lim
𝑛→∞

𝑆2𝑥𝑛 =  lim 
𝑛→∞

𝑆1𝑥𝑛 = 𝑧 ∈ 𝑋                                                                                         --- 3.1.2 

Since S1(x) is a closed subspace of X. There exists u ∈ 𝑋 such that  

𝑧 = 𝑆1𝑢                                                                                                                                 --- 3.1.3 

For x = xn, y = u, Equation 3.1.1 becomes, 

∅(𝑀(𝑆2𝑥𝑛 , 𝑆2𝑢, 𝑡 ))  

≤  𝛼1(𝑡) 𝑀𝑖𝑛{∅{

𝑀(𝑆1𝑥𝑛 , 𝑆2𝑥𝑛, 𝑡 )𝑀(𝑆1𝑢, 𝑆2𝑢, 𝑡 )

𝑀(𝑆1𝑥𝑛 , 𝑆1𝑢, 𝑡 )
,
𝑀(𝑆1𝑥𝑛 , 𝑆2𝑢, 𝑡 )𝑀(𝑆1𝑢, 𝑆2𝑥𝑛 , 𝑡 )

𝑀(𝑆1𝑥𝑛, 𝑆1𝑢, 𝑡 )
, 𝑀(𝑆2𝑢, 𝑆1𝑥𝑛, 𝑡 ),

𝑀(𝑆1𝑢, 𝑆2𝑢, 𝑡 ), 𝑀(𝑆1𝑥𝑛, 𝑆1𝑢, 𝑡 ) 

}} 

+ 𝛼2(𝑡) (∅(𝑀(𝑆2𝑥𝑛 , 𝑆1𝑢, 2𝑡 ))) 
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Taking Limit n→∞ with using Equation 3.1.2 and Equation  3.1.3, we get 

∅(𝑀(𝑧, 𝑆2𝑢, 𝑡 ))  

≤  𝛼1(𝑡) 𝑀𝑖𝑛 {∅{
𝑀(𝑧, 𝑧, 𝑡 )𝑀(𝑧, 𝑆2𝑢, 𝑡 )

𝑀(𝑧, 𝑧, 𝑡 )
,
𝑀(𝑧, 𝑆2𝑢, 𝑡 )𝑀(𝑧, 𝑧, 𝑡 )

𝑀(𝑧, 𝑧, 𝑡 )
,𝑀(𝑆2𝑢, 𝑧, 𝑡 ),𝑀(𝑧, 𝑆2𝑢, 𝑡 ), 𝑀(𝑧, 𝑧, 𝑡 )}} 

+ 𝛼2(𝑡) (∅(𝑀(𝑧, 𝑧, 2𝑡 ))) 

∅(𝑀(𝑧, 𝑆2𝑢, 𝑡 ))  

≤  𝛼1(𝑡) 𝑀𝑖𝑛{∅{𝑀(𝑧, 𝑆2𝑢, 𝑡 ),𝑀(𝑧, 𝑆2𝑢, 𝑡 ),𝑀( 𝑆2𝑢, 𝑧, 𝑡 ), 𝑀(𝑧, 𝑆2𝑢, 𝑡 ), ∅(1)}}

+ 𝛼2(𝑡) (∅(1)) 

  ⇒ ∅(𝑀(𝑧, 𝑆2𝑢, 𝑡 )) = 0 which implies 𝑀(𝑧, 𝑆2𝑢, 𝑡 ) = 1 i.e. 𝑆2𝑢 = 𝑧 .                          ---3.1.4 

From Equation 3.1.3 and Equation 3.1.4, we have 

                           𝑆2𝑢 =  𝑆1𝑢 = 𝑧.                                                                                         --- 3.1.5 

Since S2, S1 are weakly compatible, we have 

                          𝑆2𝑧 = 𝑆1𝑧                                                                                                      ---3.1.6 

Now we shall show that z is a fixed point of S2. Suppose let us assume that 𝑆2𝑧 ≠ 𝑧. 

In view of Equations 3.1.5, 3.1.1, with 3.1.6 and using properties of ∅, we get  

∅(𝑀(𝑆2𝑧, 𝑧, 𝑡 )) =  ∅(𝑀(𝑆2𝑧, 𝑆2𝑢, 𝑡 ))   

≤  𝛼1(𝑡) 𝑀𝑖𝑛{∅{

𝑀(𝑆1𝑧, 𝑆2𝑧, 𝑡 )𝑀(𝑆1𝑢, 𝑆2𝑢, 𝑡 )

𝑀(𝑆1𝑧, 𝑆1𝑢, 𝑡 )
,
𝑀(𝑆1𝑧, 𝑆2𝑢, 𝑡 )𝑀(𝑆1𝑢, 𝑆2𝑧, 𝑡 )

𝑀(𝑆1𝑧, 𝑆1𝑢, 𝑡 )
, 𝑀(𝑆2𝑧, 𝑆1𝑧, 𝑡 ),

𝑀(𝑆1𝑢, 𝑆2𝑢, 𝑡 ),𝑀(𝑆1𝑧, 𝑆1𝑢, 𝑡 ) 

}} 

+ 𝛼2(𝑡) (∅(𝑀(𝑆2𝑧, 𝑆1𝑢, 2𝑡 ))) 

= 𝛼1(𝑡) 𝑀𝑖𝑛

{
 
 

 
 

∅

{
 

 
𝑀(𝑆2𝑧, 𝑆2𝑧, 𝑡 )𝑀(𝑧, 𝑧, 𝑡 )

𝑀(𝑆2𝑧, 𝑧, 𝑡 )
,
𝑀(𝑆2𝑧, 𝑧𝑢, 𝑡 )𝑀(𝑧, 𝑆2𝑧, 𝑡 )

𝑀(𝑆2𝑧, 𝑧, 𝑡 )
, 𝑀(𝑆2𝑧, 𝑆2𝑧, 𝑡 ),

𝑀(𝑧, 𝑧, 𝑡 ),𝑀(𝑆2𝑧, 𝑧, 𝑡 ) }
 

 

}
 
 

 
 

 

+ 𝛼2(𝑡) (∅(𝑀(𝑆2𝑧, 𝑧, 2𝑡 ))) 

= 𝛼1(𝑡) 𝑀𝑖𝑛 {∅ {
∅(1 ). ∅(1 )

𝑀(𝑆2𝑧, 𝑧, 𝑡 )
, 𝑀(𝑆2𝑧, 𝑧, 𝑡 ), ∅(1 ), ∅(1 ),𝑀(𝑆2𝑧, 𝑧, 𝑡 )

 
}} 
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+ 𝛼2(𝑡) (∅(𝑀(𝑆2𝑧, 𝑧, 2𝑡 ))) 

= 𝛼2(𝑡) (∅(𝑀(𝑆2𝑧, 𝑧, 2𝑡 ))) < ∅(𝑀(𝑆2𝑧, 𝑧, 2𝑡 )) < ∅(𝑀(𝑆2𝑧, 𝑧, 𝑡 )), t > 0 

which is a contradiction. Therefore, 𝑆2𝑧 = 𝑧. Thus, 

𝑆2𝑧 =  𝑧 =  𝑆1𝑧 i.e. z is a common fixed point of 𝑆2 and 𝑆1                                                ---3.1.7 

For Uniqueness, let ω∈ X be another common fixed point of 𝑆2 and 𝑆1 such that 

𝑆2𝜔 = 𝑆1𝜔 = 𝜔 𝑎𝑛𝑑 𝜔 ≠ 𝑧                                                                                                ---3.1.8 

Then by Equations 3.17, 3.1.8, with Equation 3.1.1 and properties of ∅, we have 

∅(𝑀(𝑧, 𝜔, 𝑡 ))  = ∅(𝑀(𝑆2𝑧, 𝑆2𝜔, 𝑡 ))  

≤  𝛼1(𝑡) 𝑀𝑖𝑛

{
 
 

 
 

∅

{
 

 
𝑀(𝑆1𝑧, 𝑆2𝑧, 𝑡 )𝑀(𝑆1𝜔, 𝑆2𝜔, 𝑡 )

𝑀(𝑆1𝑧, 𝑆1𝜔, 𝑡 )
,
𝑀(𝑆1𝑧, 𝑆2𝜔, 𝑡 )𝑀(𝑆1𝜔, 𝑆2𝑧, 𝑡 )

𝑀(𝑆1𝑧, 𝑆1𝜔, 𝑡 )
, 𝑀(𝑆2𝑧, 𝑆1𝑧, 𝑡 ),

𝑀(𝑆1𝜔, 𝑆2𝜔, 𝑡 ),𝑀(𝑆1𝑧, 𝑆1𝜔, 𝑡 ) }
 

 

}
 
 

 
 

 

+ 𝛼2(𝑡) (∅(𝑀(𝑆2𝑧, 𝑆1𝜔, 2𝑡 ))) 

=  𝛼1(𝑡) 𝑀𝑖𝑛

{
 
 

 
 

∅

{
 

 
𝑀(𝑧, 𝑧, 𝑡 )𝑀(𝜔, 𝜔, 𝑡 )

𝑀(𝑧,𝜔, 𝑡 )
,
𝑀(𝑧,𝜔, 𝑡 )𝑀(𝜔, 𝑧, 𝑡 )

𝑀(𝑧, 𝜔, 𝑡 )
, 𝑀(𝑧, 𝑧, 𝑡 ),

𝑀(𝜔,𝜔, 𝑡 ),𝑀(𝑧, 𝜔, 𝑡 ) }
 

 

}
 
 

 
 

 

+ 𝛼2(𝑡) (∅(𝑀(𝑧,𝜔, 2𝑡 ))) 

= 𝛼2(𝑡) (∅(𝑀(𝑧,𝜔, 2𝑡 ))) < ∅(𝑀(𝑧, 𝜔, 2𝑡 )) < ∅(𝑀(𝑧, 𝜔, 𝑡 )), t >0. 

which is a contradiction and thus z is the unique common fixed point of S2 and S1. 
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