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ABSTRACT 

This work focus on steady two-dimensional boundary layer flow and heat transfer of sisko nanofluid 

over non-linear sheet with section and injection. The governing mathematical equation incorporate the 

influence of Brownian number, Prandtl number, power law and thermophoresis parameter.. Suitable 

similarity transformation is used to reduce the equation to non-linear ordinary differential equation 

and solved using Adomian decomposition method (ADM). The result obtained shows thermophoresis 

number, power law and Prandtl parameter has a positive effect in temperature while thermophoresis 

number, Brownian number and Prandtl number has no effect on nano concentration profile.  

Keywords: Heat, Linear, Fluid, Differential, Injection, Prandtl. 

1. INTRODUCTION 

In several industrialized duties, issues identifying with heat exchange with Nano-fluids have 

gotten enormous consideration due to its colossal applications in engineering and 

technological fields. Nanofluid refers to a fluid consisting of nano-meter – sized particles 

referred to as nanoparticles. Those fluids are built colloidal suspensions of nanoparticles in a 

based fluid. Khan (2010). Flow in addition to heat movement in Nanofluid towards a 

nonlinear stretching sheet were taken into account by Rana and Bhargava (2012). Wong and 

De Leon (2010) studied the uses of Nano-fluids.. The method Adomian decomposition 

investigation meant for the boundary layer arrangement of convective heat exchange with 

low gradient over a flat plate were studied by Jiya and Oyubu (2012). The stagnation point 

flow in an extending/contracting slip in a Nanofluid was researched by Bachok, Ishak and 

Pop (2011). Makinde and Aziz (2011) verified the boundary sheet movement on fluid in 

Nanofluid along a stretching plate through convective boundary conditions. The non-uniform 

heat incorporation impacts upon heat exchange of non-Newtonian power law were studied by 

mahmood and meghed (2012). Flow as well as heat exchange above a contracting sheet that 

is unsteady with suction in Nanofluid were examined by Roni, Ahmed and Pop (2012). 

Hydrodynamics edge level micropolar flows along a stretching plane in non darcian middling 

with penetrability were studied by Aiyesimi, Yusuf and Jiya (2013). Aziz and Khan (2012) 

considered an innate convective limit layer movement of Nanofluid upon a convective 

warmed perpendicular shield. Radiation property in temperature plus mass movements in 
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MHD stagnation - point flow along a porous plane plate through warmth convective 

boundary conditions were studied by Hamad, Uddin and Ismail (2012).  

Although there are many studies on fluid and heat exchange of nano-fluid over non-linear 

sheet with suction and injection but none has considered sisko nano-fluid with Adomian 

decomposition method. The purpose of this research paper is to obtain solution to the two 

dimensional boundary layer flow and transfer of heat in a sisko Nano-fluid over nonlinear 

stretching part with suction/ injection using Adomian Decomposition Method (ADM). 

2. ADOMIAN DECOMPOSITION METHOD 

Adomian decomposition method (ADM) is adopted in this work as one of the analytic 

methods. Adomian decomposition method is used to obtain an obstructed form of numerical 

approximations of differential equations involving linear and nonlinear terms.  

The method is applicable in solving problems like integro-differential, algebraic, differential 

relay, integral and partial differential equations in the field of science and engineering. An 

American mathematician, G. Adomian (Adomian 1923- 96) invented the system of Adomian 

decomposition method. In his to pursuit for a resolutions of certain equations inform of 

sequences, Adomian polynomials were used recursively to calculate the terms in series from 

the problem arising from non-linear operators (Adomian, 1994, Adomian 1988). The 

Adomian decomposition method is however more technical than any other classical methods 

because it evades agitation in stability to find resolutions of known nonlinear equation as well 

as, offers a precise estimate of the solution. The technique does not necessitate discretization 

of the resolution and this makes it a main advantage over traditional numerical methods. 

Great techniques of equations involving linear or nonlinear equations are needed as compare 

to other numerical methods. The solution is found within short time and reduces the memory 

of the computer as well as errors free. We start using the (deterministic) formf(u) = g(t) for 

considering and illustrating the method of Adomian Decomposition. The operator f having 

term of linear and nonlinear where the term of the linear is represented as Lu and L is the 

linear operator. Instead, the linear term is written as L u + Ru and L is chosen as the 

derivative of highest-order. The linear operator is R served as the remainder (considering 

stochastic expression term) 

The nonlinear expression is indicated as Lu.  

 Lu + Ru + Nu = g                                                                                     (2.1) 

Thus, 

     L−1Lu = L−1g − L−1Ru − L−1Nu                  (2.2) 

 The problems value were defined as L−1 for L =
∂n

∂tn as the n-fold define                              

operator from 0 to t that served as integration. For the operator L =
∂2

∂t2, for instance we have, 

 L−1Lu = u − u(0) − tu′(0)                                (2.3) 
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u = u(0) + L−1g − L−1Ru − L−1Nu                                                                        (2.4) 

Taking into consideration problem of boundary value for the same equation, operator L−1 is 

represented as an indefinite integral and u = A + Bt for the initial expressions which are two 

and A, B are evaluated from the set Condition. The first three terms in the supposed 

decomposition represented by u0 

U = ∑ un
∞
n=0     (2.5) 

Nu is assumed analytical solution. 

Nu = ∑ An
∞
n=0                                   (2.6)  

Therefore, An are in particular created (Adomian polynomials used for the specific 

nonlinearity). 

These depend on the u0  to un sections which figure quickly a convergent sequences. The 

An indicated as:  

 A0 = f(u0)          (2.7) 

 A1 = u1(
d

du0
)f(u0)         (2.8) 

 A2 = u2 (
d

du0
) f(u0) +

u1
2

2

d2

u0
2 f(u0)       (2.9) 

It is capable to be discovered early stage of expression (for n≥ 1)  

An = ∑ C(v, n)f vu0
∞
n=1  In the linear situation when 

G(u) = u the  An reduce to un. Then A0 = A(u0, u1, u2 … . . un) 

Several means are considered to generate the polynomials. The successive recursive 

formulations were used 

 An =
1

n!
[

dn

dλ
[N(∑ λi∞

n=0 ui)]]λ  n = 0,1,2,3,4 … …     (2.10) 

The solution is a created solution through the form of conventional solution and it is more 

accurate and stand the test to the technique of streamlining the physical problems since it 

does not help in linearizing or postulation of unstable non-linearity,.  

3. PROBLEM FORMULATION 

Consider the laminar, two- dimensional, steady flow and heat transfer in Sisko Nano-fluid in 

the region 0y  determined with a sheet stretching with power-law velocity sU cx   were 

considered and a non-negative actual number represented as c and the sheet stretching rate 

represented as  0s  . The horizontal axis called the x -axis is to be corresponded to the 

stretching sheet and the vertical axis ( y -axis) correspondent to the sheet of the plane. A 
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method of heat transfer by convention that provides heat transfer coefficient ℎ𝑓 is employed 

in cooling down or heating up the sheet surface (to be regulated) in using warm temperature 

of the fluid, 𝑇𝑤 .  The equivalent nano particle bulk fraction of the exterior of the stretching 

sheet was presumed to be wC  whereas 𝑇∞  and 𝐶∞were the temperature of the ambient as well 

as volume fractions of nano particle separately. Based on these postulations combined with 

estimation of the boundary layer. The convective boundary-layer flow of force is directed 

below: 

Continuity Equation: 

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0                                                                                                           (3.1) 

Momentum Equation: 

𝑢
𝜕𝑢

𝜕𝑥
+v

𝜕𝑢

𝜕𝑥
=

𝑎

𝜌

𝜕2𝑢

𝜕𝑦2 −
𝑏

𝜌

𝜕

𝜕𝑦
(−

𝜕𝑢

𝜕𝑦
)

𝑛

       (3.2) 

Heat Equation 

𝑢
𝜕𝑇

𝜕𝑥
+v

𝜕𝑇

𝜕𝑦
=∝

𝜕2𝑇

𝜕𝑦2 + 𝜏 [𝐷𝐵
𝜕𝐶

𝜕𝑦

𝜕𝑇

𝜕𝑦
+

𝐷𝑇

𝑇∞
(

𝜕𝑇

𝜕𝑦
)]      (3.3) 

Concentration Equation 

𝑢
𝜕𝐶

𝜕𝑥
+v

𝜕𝐶

𝜕𝑦
= 𝐷𝐵

𝜕2𝐶

𝜕𝑦2 +
𝐷𝑇

𝑇∞

𝜕2𝑇

𝜕𝑦2      (3.4) 

Subject to the boundary conditions: 

u = U = c𝑥𝑠, 𝑣𝑤= S, 𝐾
𝜕𝑇

𝜕𝑦
 = -ℎ𝑤[𝑇𝑤 − 𝑇∞], C=𝐶𝑤 𝑎𝑡 𝑦 = 0,    (3.5) 

𝑢 → 0, 𝑣 → 0, 𝑇 → ∞, 𝐶 → 𝐶𝑤  𝑎𝑠 𝑦 → ∞      (3.6) 

Applying suitable similarity transformation and stream function to equation (3.1) to (3.6) the 

equation is reduced to the following local solution 

𝑓′′′ −  
𝐴𝑅

𝐴𝑅−𝑛(𝑓′′)𝑛−1 𝐿1
−1

[𝑓𝑓′ − (𝑓′)2]=0      (3.7) 

𝜃′′ + 𝑃𝑟𝑓𝜃′ + 𝑁𝑏𝜃′𝜗′ + 𝑁𝑡𝜃′2 = 0                                                               (3.8) 

 𝜗′′ + 𝐿𝑒𝑓𝜗′ +
𝑁𝑡

𝑁𝑏
𝜃′ = 0      (3.9) 

With required conditions: 

𝑓(0) = 0,            𝑓′(0) = 1,              𝜃′(0) = −𝐵𝑖[1 − 𝜃(0)],           𝜗(0) = 1,          (3.10) 

𝑓′(1) = 0,         𝜃(1) = 0,              𝜗(1) = 0.                                         (3.11) 
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SOLUTIONS 

Applying ADM and Apply inverse operator on equation (3.7) to (3.11) we have  

𝑓(𝜂) =  
𝐴𝑅

𝐴𝑅−𝑛𝐿1
−1(𝑓′′)𝑛−1 𝐿1

−1
[𝑓𝑓′ − (𝑓′)2 + 𝑆 + 𝜂 +

𝜂2

2
∝    (3.12) 

𝜃(𝜂) = −𝐿2
−1[𝑃𝑟𝑓𝜃′ + 𝑁𝑏𝜃′𝜗′ + 𝑁𝑡𝜃′2] + 𝛽 + 𝜂𝐵𝑖(1 − 𝛽 )          (3.13) 

𝜗(𝜂) = −𝐿2
−1 [𝐿𝑒𝑓𝜗′ +

𝑁𝑡

𝑁𝑏
𝜃′] + 1 + 𝛾      (3.14) 

where 

𝐿1
−1 = ∭ (. )𝜕𝜂𝜕𝜂𝜕𝜂 and 𝐿2

−1 = ∬ (. )𝜕𝜂𝜕𝜂      (3.15) 

Series polynomial is used to decompose the depending variable in equation (3.12) to (3.15) as 

a function of nonlinear terms, so we have 

P(F(𝜂)) =  ∑ 𝐴𝑚
∞
𝑚=0 (𝜂) − ∑ 𝐵𝑚

∞
𝑚=0 (𝜂)      (3.16) 

𝐺(𝜃( 𝜂)) = ∑ 𝐶𝑛
∞
𝑛=0 (𝜂) + ∑ 𝐷𝑛

∞
𝑛=0 (𝜂) + ∑ 𝐸𝑛

∞
𝑚=0 (𝜂)    (3.17) 

𝐺(𝜗( 𝜂)) = ∑ 𝐾𝑛
∞
𝑛=0 (𝜂)        (3.18) 

Adomian polynomials 𝐴𝑚 , 𝐵𝑚 , 𝐶𝑛 , 𝐷𝑛 , 𝐸𝑛  𝑎𝑛𝑑 𝐾𝑛 represent the nonlinear terms 

P(𝑓(𝜂)), 𝐺(𝜃(𝜂)), 𝐺(𝜗(𝜂))can be gotten from: 

𝐴𝑚 = ∑ 𝑓′𝑚−𝑉
𝑚
𝑉=0 𝑓′𝑉          (3.19) 

𝐵𝑚 ∑ 𝑓𝑚−𝑉
𝑚
𝑉=0 𝑓′′𝑉          (3.20) 

𝐶𝑛 = ∑ 𝑓𝑛−𝑉
𝑛
𝑉=0 𝜃′𝑉         (3.21) 

𝐷𝑛 = ∑ 𝜃′𝑛−𝑉
𝑛
𝑉=0 𝜗′𝑉         (3.22) 

𝐸𝑛 = ∑ 𝜃′
𝑛−𝑉

𝑛
𝑉=0 𝜃′𝑉         (3.23) 

𝐾𝑛 = ∑ 𝑓𝑛−𝑉𝜗′𝑉
𝑛
𝑉=0          (3.24) 

For determination of other components of𝑓(𝜂), 𝜃(𝜂), 𝜗(𝜂)we have that, 

∑ 𝑓(𝜂)∞
𝑚+1 =  

𝐴𝑅

𝐴𝑅−𝑛𝐿1
−1 ∑ (𝑓′′)𝑛−1∞

𝑚=0
𝐿1

−1 ∑ [𝐴𝑚 − 𝐵𝑚]∞
𝑚=0     (3.25)        

∑ 𝜃(𝜂) =∞
𝑚+1 ∑ [𝑃𝑟𝐶𝑛 + 𝑁𝑏𝐷𝑛 + 𝑁𝑡𝐸𝑛]∞

𝑛=0
      (3.26) 

∑ 𝜗(𝜂)∞
𝑚+1 = −𝐿2

−1 ∑ [𝐿𝑒𝐾𝑛 +
𝑁𝑡

𝑁𝑏
𝜃′]∞

𝑚=0       (3.27) 

Maple 18 software is used to compute the integrals, where 

𝑓0(𝜂) = 𝑆 + 𝜂 +
𝜂2

2
∝         (3.28) 
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𝜃0(𝜂) = 𝛽 + 𝜂𝐵𝑖(1 − 𝛽)        (3.29) 

𝜗0(𝜂) = 1 + 𝜂𝛾         (3.30) 

4. RESULTS AND DISCUSSION 

Maple 18 software was use to simulation the solution of Adomian Decomposition method of 

sisko nano-fluid over nonlinear sheet with suction and injection. The graphs of velocity𝑓′(η), 

temperature θ (η) and Nano Concentration profiles ϑ(η) were plotted against Prandtl 

Number, thermophoresis number, power law and Brownian number. The graphs shows, the 

influence of the physical parameters such as material constant of sisko Nano-fluid (A)and 

Prandtl number(Pr) on the velocity (a), temperature(b)and nano concentration profiles (c) 

 

 

Figure 1 Effect of Thermophoresis number on (a) Concentration Profile (b) Temperature profile 
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Figure 2 Effect of Brownian number on (a) Concentration (b) Temperature profile 

 

 

 

Figure 3 Effect of Power law on (a) Temperature Profile (b) Velocity profile 
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Figure 4 Effect of Prandt number on (a) Concentration profile (b) Temperature profile 

Figure 1 shows the effect of thermophoresis on nano concentration and Temperature profile. 

As the thermophoresis number increase there is raise in temperature and no change in 

concentration profile 

Figure 2 shows the effect of Brownian number on nano concentration and Temperature 

profile. As the Brownian number increase there is negative decrease in temperature and no 

change on concentration profile 

Figure 3 shows the effect of Power law on Velocity profile and Temperature profile. As the 

Power law increase there is positive increase in temperature and no change on velocity profile 

Figure 4 shows the effect of Prandtl number on nano concentration and Temperature profile. 

As the Prandtl number increase there is an increase in temperature and no change on 

concentration profile 

5. CONCLUSION 

This work focuses on the sisko nano fluid over non-linear sheet with suction and injection. 

Local similarity solutions were obtained and solution solved using Adomian Decomposition 

method. The solution was presented which depends on Brownian number, thermophoresis 

number, Prandtl number and power law on the velocity, temperature and nano concentration 

profiles. It was found that  

1. Brownian number does not have effect on nano concentration profile 

2. Increase in power law has positive effect on temperature and no change on nano 

concentration profile. 

3. Increase in thermophoresis increase the temperature profile but no effect on nano 

concentration. 

4. Increase in Prandtl number increase the temperature but no effect on concentration profile 
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