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Abstract

In this paper, we deal with a delayed Kirchhoff-type viscoelastic equation. Under suitable conditions, we
establish the growth of solution.
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1. INTRODUCTION
In this paper, we consider the following delayed Kirchhoff-type viscoelastic equation

(e — MUVl Au + [ @ (t — q)Au(q)dg
g + [l (@l (x,t - g)dg

{ = blulP~?u, xeN t>0, (1)
u(x,t) =0, x €0Q, t € [0,0),
ut(x) _t) = fO (x, t), (x: t) € 'Q' X (01 TZ);

\u(x, 0) = ug(x), u(x,0) = uy(x), x €,

where b, u, are positive constants, p > 2, and t,, T, are time delay with 0 < 7; < 1, and p, is
bounded function and @ is a differentiable function. M(s) is a non-negative function of C?* for
s > 0, satisfies M(s) = my + as¥,my > 0, =0 and y > 0, specially we take M(s) =1 +s?
where my =1, a = 1.

Time delays often appear in many practical problems such as thermal, economic phenomena,
biological, chemical, physical, electrical engineering systems, mechanical applications and
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medicine (Kafini and Messaoudi (2016)). The problem (1) is a general form of a model
introduced by Kirchhoff (1883). To be more precise, Kirchhoff recommended a model denoted
by the equation for f = g = 0,

9%u ou du Eh L {3u\2 92u
phSE+ o5+ (5) = o+ 510y (52) axf 3+ r o, ®

for 0 < x <L, t = 0, where u(x, t) is the lateral displacement, E is the Young modulus, p is the
mass density, h is the cross-section area, L is the length, p, is the initial axial tension, § is the
resistance modulus, and f and g are the external forces. Furthermore, (2) is called a degenerate
equation when p, = 0 and nondegenerate one when p, > 0.

In 1986, Datko et al. indicated that delay is a source of instability. Nicaise and Pignotti (2006)
considered the following wave equation with a linear damping and delay term

U — Au+ pue(x, t) + ppue(x, t —7) = 0. 3

They obtained some stability results in the case 0 < u, < u;. In the absence of delay, Zuazua
(1990) looked into exponentially stability for the equation (3).

Wu and Tsai [24] (2006), considered the following Kirchhoff-type equation
ug — M(IVull?)du + Ju " ?u, = [ulP~?y, (4)

with the positive upper bounded initial energy and they obtained the blow-up of solutions for the
equation (4). Ye (2013), considered the global existence results by constructing a stable set in
Hj (©2) and showed the decay by using a lemma of Komornik for the nonlinear Kirchhoff-type
equation (4) with dissipative term.

When M (s) = 1, the equation (1) becomes the following form

t

T2
et — Dt — whug + f gt — $)Au(s)ds + 1, + f 12 (0) 2 (x, £ — p)dp
0 T1

= b|u|??u. (5)

In [3], Choucha (2020) et al. obtained the blow-up of solutions under appropriate conditions of
the equation (5). In [4], Choucha (2020) et al. showed the exponential growth of solution for the
equation (5).

In [23], Yiiksekkaya and Pigkin (2021) proved the nonexistence of global solutions of the
equation (1). Our goal in this paper is to get the growth of solutions for the Kirchhoff-type
viscoelastic equation (1) with distributed delay. In recent years, some other authors investigate
hyperbolic type equations with delay term (see Antontsev et al. (2021), Choucha et al. (2021),
Doudi and Boulaaras (2020), Piskin and Yiiksekkaya (2020), Piskin and Yiiksekkaya (2021a),
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(2021b), (2021c), (2021d), (2021e), (2021f), (2021Qg), Yuksekkaya et al. (2021a), (2021b),
Yiiksekkaya and Piskin (2021c)).

The paper is organized as follows: In section 2, we give some materials that will be used later. In
section 3, we state and prove our main result.

2. PRELIMINARIES

In this part, we denote some materials for the proof of our result. As usual, the notation |||,
denotes LP norm, and (.,.) is the L? inner product. In particular, we write ||. || instead of ||. ||,.

Now, we give some assumptions used in this paper:
(Al) @ € (R, R,) is decreasing function, such that
@) 20,1— [ w(q)dg=1>0. (6)
(A2) There exists a constant & > 0, such that
w'(t) < —&w(t),t > 0. (7

(A3) uy: [t1,T,] = R is bounded function, so that

5—
(22_1) f:ﬂuz(q)l dq <y, 6> % @®)

Let B, > 0 be the constant satisfying (Adams (2003), Piskin (2017))

llvll, < B,lIVvll,, forv e Hg(Q. (9)
It holds
[t~ (@), 7 ®) dg = - 30OV + 5 @ oT0)@)
0
— 3o | @ovwy(®) ~ (f; 9(a) da) IVu(®II?], (10)
where

(@ovu)(t) = f, [, @(t — )IVu(t) — Vu(q)|* dg. (11)
Firstly, similar to Nicaise and Pignotti (2008), we introduce the new variable

y(x,p,q,t) =u(x, t —qp),

then, we get
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{qyt (x,p,q,t) +y,(x,p,q,t) =0 (12)
:V(x; OI q' t) = ut (x, t)
Hence, the problem (1) is equivalent to:
(e = MAWulDbu + @ (¢~ 9)dulg)dq
e + [l (DI1y(x, 1,9, 0)1dg (13)
| = blul|?~?u, xeEQO t>0,
k qyt(xi p; q' t) + :Vp(x; ,0; q; t) = 0;
with initial and boundary conditions
ulx,t) =0, x € 09,
y(x,p,q,0) = fo(x,qp), (14)
u(x,0) = uo(x), u(x,0) =uy(x),
where
y(x,p,q,t) € Q% (0,1) X (11,7,) X (0, 00).
We give the local existence without proof similar to (Georgiev and Todorova (1994), Piskin
(2015), Wu and Tsai [25] (2006)).
Theorem 1 Suppose that (6), (7) and (8) hold. Let
2<p, ifn=1.2,
{2<p<%, if n>3. (15)

Then, for any initial data
(ug, Uy, fo) € (HE(Q) N HZ(Q)) x HE(Q) x L2(Q % (0,1) X (11,75)),
with compact support, then the problem (13)-(14) has a unigue solution
u€ecC ([0, T1; (HE(Q) n HZ(Q))) X H3 (Q) x L2(Q x (0,1) X (11, 73)),
for some T > 0.
Now, we give the global existence result without proof similar to (Wu and Tsai [25] (2006)).

Theorem 2 Assume that (6), (7), (8) and (15) hold. If u, € (H3(Q) N H?(Q)), u; € H3(Q) and

p-2

ﬁ<2—”5(0)>7 <1, (16)

l (p—2)1
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where C, is the Poincare’s constant. Then, the local solution u(t, x) is global in time.

Lemma 3 Suppose that (6), (7), (8) and (15) hold. Let u(t) be a solution of (13), then E(t) is
nonincreasing, such that

E(O) = 2 luell? +2 (1= [ w(q) dq) IVull? + 5= I 7ul|20+D
2 2 0

2(y+1)
+3 @) +3 fy fy 17 alua (@) y? (e, p, 4, Dldg dpdx = ZIlull}, (17)
satisfies
E'(0) < —; (mlluell? + [ [71r2(@)11y2(x,1, q,)ldqdx). (18)

Proof. Multiplying the first equation of (13) by u, and integrating over (), we obtain

d (1 1 t
— 1= 24 - - 2
dt{z e +2<1 | w(q)dq> I7ul

1 b
4o IPUlPO ) 4+ (@ora) () — -l
20+ D I7ull 5 ([@oVw) (1) pllullp

= _M1||ut||2 —.]-

T2
we [l (@llyCe 1,q,0ldqds
Q T1

+= (@'o7u) (1) — S w@OIVull? (19)
and, we obtain

d1 172
d——f ff gl (DI ly*(x, p, q, t)|dq dpdx
tz Q 0 Tl

1 1 Tz
=—§f ff 2|u, (@) yy,dq dpdx
Q. 0 Tl
1 T2
=] | m@ly*e0,q,0ldgax
Q. Tl

1 T2
5| | @Iyt 1g.0ldgar
Q T1

1( ("
= E(L qu(q)ldq> llull?
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=20, [Pl (@lly?(x, 1,9,6)|dgdx. 20)
270 Jrq

Thus, we have

d T2 1
SEO = -l - [ [ @l 1,6, 0ldgdx +5 @or0 @)
Q T1

1 1/ ("2
5@ @I7ul? +5< I |H2(Q)|dQ> 12
71

=3I [P (@1ly?(x 1,4, 0)|dqdx. 1)

From (19) and (20), we obtain (17). Also, utilizing Young’s inequality, (6), (7) and (8) in (21),
we get (18).

Now, to prove our main result, we define

H(t) = —E(t)
= 2ty = el - 21 - jtw(q)dq IVul|2 — s—— [|7u]|20+D)
p P2t 2 0 20+ 1)
—~(@orw) () -3 , [ 122 alie (@1 1y (x, p, ¢, dg dpdx. (22)

3. GROWTH OF SOLUTIONS
In this part, we establish the growth of solutions for the problem (13)-(14).

Theorem 4 Assume that (6)-(8), (15) and (16) hold. Suppose further that E(0) < 0 holds. Then,
the unique local solution of the problem (13) grows exponentially.

Proof. By (17), we get

E(t) <E(0) <0. (23)
Thus,
T2
H'(t) = —E'(t) = c1<||utll2 +f f Iz (DIly?*(x, 1,4, t)qudx>
QO T1
> ¢ [y [ (@lly*(x, 1,4,0)ldgdx = 0, (24)
and
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0<H(0) < H(®) < lull}. (25)
Set
K(t) = H(t) + ¢ [, uucdx + %fﬂ u? dx, (26)

where € > 0 to be specified later.

By multiplying the first equation of (13) by u and with a derivative of (26), we get
t
K'(t) = H'(E) + ellu, |12 + gf Vuf o(t — q)Vu(q)dqdx — [Vull?
Q 0

—IVul|20+D + ¢b Jo lulPdx —¢ [ f:fluz(q)lluy(x, 1,q,t)|dqdx. (27)

By using
T2
. f j 2 (@ lluy (e 1,9, O)ldgdx
9] T

1

< &6, (L 1u2(@)1dq) llull® + o @Iy (1., O)ldgdx},  (28)

and

t
—qg)d vuVv dxd
efow(t q) qfn uVu(q) dxdq
t t
= e [ wt-aydg [ vu(vule) - 7u(®) dxdq + ¢ [ w(q)dqllvul?
0 Q 0

> f @ (@dq I7ull? - & (@ovu) (©). 29)

and, from (27), we get

1 t
K02 10+ el ~ (13 [ @) 1wl
0
T2
—e||7ull2¥+D + eb|lulll — &6, (f qu(q)ldq> [lull?
T1

5l [P @lly? (1, Oldqdx + £ (@orw @) )
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1

Hence, by using (24) and by setting §, such that, = K, substituting in (30), we obtain

46101

1 t
K'(t) = [1 —ex]H'(t) + ellull* — ¢ [(1 — Ef w(q)dq> | Vu|?
0

—ell7ull20D + ebllully — = ([lu(@)1dq) ull? + @ora) (©). (31)

4c1K
By (22),for0 <a <1,

ebllull; = ep(1 — )H() + 51’(12_—60

1 _ t
+M<1 -[ w(q)dq> 7ul?

llucll® + eballully

ep(1—a)

20+ 1) |72+ + %p(l — a)(woVu)(t)

+ LD [T Gl (@] 1y 2 p, g, Ol dpdi, (32)

Substituting in (31), we obtain

K'(t) = [1—ex]H' () + ¢ [@+ 1] [k

+& K@) <1 — j; w(q)dq) — <1 — %J; w(qﬂQ)l IVull?

T2
p
=l 1 s @) )l + ebalul

ep(1—a) btz
+ B @Iy p.a.0lda dpd
Q 0 T1

+§(p(1 —a) + 1)(@woVu)(t). (33)

By utilizing Poincare’s inequality, we have

p(1—a
e

K'(t) >[1—ex]H'(t) + ¢ ) + 1] [, )12 +;(p(1 —a) + 1)(woVu)(t)
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e {(p(lz_ a) 1) B fo o (@)dg (p(l —za) - 1>

(f qu(q)ldq>} IVull? + eballully
71

4cik

- 1
+ OO [ (72 g1, (@) y2(x, p, 0, 0l dg dpdx. (34)
Choosing a > 0 small enough, such that

_p(d—a)
2

p(l1—a)
2(r+1)

a, 1>0,

1>0,

and

p(1-a)
- 2“1

fooo w(‘])dq < p(12—a)_l = (35)
2 2

2a.+1’

then, choosing k large enough, such that

1— t 1—-a)—1 2
. :<p(Ta)_1>__];w(q)dq<p( za) >_4;K<L qu(q)ldq>>0-

Once k and a are fixed, picking € small enough, such that

az;=1—¢k >0,
and
K(®) < llully. (36)
Hence, for some f > 0, the estimate (34) takes the form
K'(£) = BIH() + lluell? +I7ull® + [7ull2*D + (@oVu)(t)
Hlallh + [, fy 17 alua(@)] 1y*Cx p,q, ©)ldq dpdx}, 37)
and
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K(t) = K(0)>0,t>0. (38)

Now, utilizing Young’s and Poincare’s inequalities, by (26), we obtain

K(t) = (H(t)+ef uutdx+£2ﬂf u? dx>
Q Q

<c|H(t) + + Jlull? + [[Vull?

f uu.dx
Q

< c[H(®) + IVull® + llull?]. (39)

For ¢ > 0, and since H(t) > 0, by (13) we get
1 1 t
— Stz = 5(1- [ @@dg ) wulp?
2 2 .

1
) (| 7u]|20+D) — > (@oVu)(t)

1 1 T2 b
—s [ [ [ al@y2ep.a.0ldg dpax + 2l
Q 0] T1 p

>0, )
then
1 t ,
2(1- [ wt@dq)ivu
0
b b
< = lullf < = lullf + [[7ul2o+D
p p
1
+(@ovu) () + J, J; frrlz qlu, (DI 1y?(x, p,q,)|dgdpdx.  (41)
Therefore,

2b t
7l < >l + 2(wovu) (©) + ( f w(q)dq) 7ull?
0

+207ull2¥+D + 2 [ [ 7 qlu (@] ly2Cx, p, q,6)1dq dpdx. (42)

Also, by using (6), to obtain
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2b
I7ull? < > lully + 2(@oVw)(t) + (1 — DIIVull?

+207ull2¥+D + 2 [ [ 7 gl (@1 ly2Ce p, g, O)ldq dpdx.  (43)

As aresult, inserting (43) into (39), to see that there exists k; > 0, such that, for V¢t > 0

b
K(6) < ky[H(®) + I7ull? + I7ulP0*D + Jlugll + » lully + (@oVu)(t)

+1, J 17 alu (@)1 1y*(np,q,Oldg dpdx]| (44)
By the inequalities (37) and (44), we get
K'(t) = 2K (1), (45)
where A > 0, depending only on £ and k;.
An integration of (45), we have
K(t) = K(0)e*, vt > 0. (46)
By (25) and (36), we get

K(®) < H®) < [lull}. (47)

From (46) and (47), we obtain
lully = ce?t, vt > 0.

Thus, the proof is completed.

CONCLUSIONS

Recently, there has been published much work concerning the wave equations (Kirchhoff,
Petrovsky, Bessel,... etc.) with different state of delay time (constant delay, time-varying delay,...
etc.). However, to the best of our knowledge, there were no growth of solutions for the delayed
Kirchhoff-type viscoelastic equation with delay term. Under suitable conditions, we have been
proved the growth of solutions.
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