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Abstract                                                                                                                    

The object of the present paper is to study curvature properties of a normal paracontact metric manifold 

with constant sectional curvature satisfying the conditions  𝑍̃(𝜉, 𝑋)𝑅 = 0, 𝑍̃(𝜉, 𝑋)𝑃 = 0, 𝑍̃(𝜉, 𝑋)𝑍̃ = 0, 

𝑍̃(𝜉, 𝑋)𝑆 = 0 and 𝑍̃(𝜉, 𝑋)𝐶̃ = 0. According to these cases, we classified normal paracontact metric 

manifolds, where 𝑅 is the Riemanniann curvature tensor, 𝐶̃ is the quasi-conformal curvature tensor, 𝑃 is 

the projective curvature tensor, 𝑍̃ is the concircular curvature tensor and 𝑆 is the Ricci tensor. 

Keywords: Normal paracontact metric manifold, Einstein manifold, concircular curvature tensor.  

1. INTRODUCTION 

Recently paracontact geometry has become a popular field of study of differential geometry. The 

study on paracontact geometry was started by Kenayuki and Williams [11].  Zamkovoy studied 

canonical connections on paracontact manifolds and found interesting results about their properties 

[22]. In 2009 and 2014, Welyczko studied Legendre curves and Slant curves in 3-dimensional 

normal almost paracontact metric manifolds [16, 18]. In 2015, Erken studied 3-dimensional normal 

almost paracontact metric manifold [10].  Atçeken et. al studied semiparallel submanifolds of a 

normal paracontact metric manifold in [3]. Since then, (para)contact geometry has been studied 

extensively by many geometers [8,9,12,17].  

In this paper, we have investigated the derivative effects of the cocircular curvature tensor of a 

normal paracontact metric manifold on some other curvature tensors. In the second section, some 

basic definitions and formulas such as Ricci tensor, Ricci operator, scalar curvature function of a 

normal paracontact metric manifold with constant sectional curvature have been introduced. In the 

third section, we have studied the curvature tensors of a normal paracontact metric manifold with 
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constant sectional curvature satisfying the conditions  𝑍̃(𝜉, 𝑋)𝑅 = 0, 𝑍̃(𝜉, 𝑋)𝑃 = 0, 𝑍̃(𝜉, 𝑋)𝑍̃ =

0, 𝑍̃(𝜉, 𝑋)𝑆 = 0 and 𝑍̃(𝜉, 𝑋)𝐶̃ = 0. According these cases, we classified normal paracontact 

metric manifolds, where 𝑅 is the Riemannian curvature tensor, 𝐶̃ is the quasi-conformal curvature 

tensor, 𝑃 is the projective curvature tensor, 𝑍̃ is the concircular curvature tensor and 𝑆 is the Ricci 

tensor. 

2. PRELIMINARIES 

A 𝑛 −dimensional differentiable manifold (𝑀, 𝑔) is said to be an almost paracontact metric 

manifold if there exist on 𝑀 a (1,1) tensor field 𝜙, a contravariant vector 𝜉 and a 1-form 

𝜂 −such that 

𝜙2𝑋 = 𝑋 − 𝜂(𝑋)𝜉,      𝜙𝜉 = 0,     𝜂(𝜙𝑋) = 0,     𝜂(𝜉) = 1             (1) 

and  

𝑔(𝜙𝑋, 𝜙𝑌) = 𝑔(𝑋, 𝑌)𝜉 − 𝜂(𝑋)𝜂(𝑌),    𝜂(𝑋) = 𝑔(𝑋, 𝜉),             (2) 

for any 𝑋, 𝑌 ∈ 𝜒(𝑀). If the covariant derivative of 𝜙 satisfies  

(∇𝑋𝜙)𝑌 = −𝑔(𝑋, 𝑌)𝜉 − 𝜂(𝑌)𝑋 + 2𝜂(𝑋)𝜂(𝑌)𝜉             (3) 

then, 𝑀 is called normal paracontact metric manifold, where ∇ is Levi-Civita connection. From 

(3), we can easily to see that  

𝜙𝑋 = ∇𝑋𝜉                  (4) 

for any 𝑋 ∈ 𝜒(𝑀) [11]. 

On the other hand if such a manifold has constant sectional curvature equal to 𝑐, then it’s the 

Riemannian curvature tensor is 𝑅 given by  

          𝑅(𝑋, 𝑌)𝑍 =
𝑐 + 3

4
{𝑔(𝑌, 𝑍)𝑋 − 𝑔(𝑋, 𝑍)𝑌}

+
𝑐 − 1

4
{  𝜂(𝑋)𝜂(𝑍)𝑌 − 𝜂(𝑌)𝜂(𝑍)𝑋 + 𝑔(𝑋, 𝑍)𝜂(𝑌)𝜉                      

                            −𝑔(𝜙𝑋, 𝑍)𝜙𝑌−2𝑔(𝜙𝑋, 𝑌)𝜙𝑍} − 𝑔(𝑌, 𝑍)𝜂(𝑋)𝜉 + 𝑔(𝜙𝑌, 𝑍)𝜙𝑋                                     (5) 

for any vector fields 𝑋, 𝑌, 𝑍 ∈ 𝜒(𝑀). 

The concircular curvature tensor, projective curvature tensor and quasi-conformal curvature 

tensor of a normal paracontact metric manifold 𝑀2𝑛+1 are, respectively, defined by  

𝑍̃(𝑋, 𝑌)𝑍 = 𝑅(𝑋, 𝑌)𝑍 −
𝜏

𝑛(𝑛−1)
{𝑔(𝑌, 𝑍)𝑋 − 𝑔(𝑋, 𝑍)𝑌},             (6) 
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𝑃(𝑋, 𝑌)𝑍 = 𝑅(𝑋, 𝑌)𝑍 −
1

𝑛−1
{𝑆(𝑌, 𝑍)𝑋 − 𝑆(𝑋, 𝑍)𝑌},             (7) 

𝐶̃(𝑋, 𝑌)𝑍 = 𝑎. 𝑅(𝑋, 𝑌)𝑍 + 𝑏. [𝑆(𝑌, 𝑍)𝑋 − 𝑆(𝑋, 𝑍)𝑌 + 𝑔(𝑌, 𝑍)𝑄𝑋 − 𝑔(𝑋, 𝑍)𝑄𝑌] 

     −
𝜏

𝑛
[

𝑎

𝑛−1
+ 2𝑏] [𝑔(𝑌, 𝑍)𝑋 − 𝑔(𝑋, 𝑍)𝑌]              (8) 

where 𝑎 and 𝑏 are two scalars, 𝑅 is the Riemannian curvature tensor,  𝜏 is the scalar curvature 

function of 𝑀 and 𝑄 is the Ricci operator given by 𝑔(𝑄𝑋, 𝑌) = 𝑆(𝑋, 𝑌) [19,20]. 

Now we get some equations that we will use later.  

Let 𝑀 be 𝑛 −dimensional a normal paracontact metric manifold. In (5) choosing 𝑋 = 𝜉, we get  

𝑅(𝜉, 𝑌)𝑍 = 𝑔(𝑌, 𝑍)𝜉 − 𝜂(𝑍)𝑌,                (9) 

in the same way in (5) putting 𝑍 = 𝜉, we obtain 

𝑅(𝑋, 𝑌)𝜉 = 𝜂(𝑌)𝑋 − 𝜂(𝑋)𝑌.              (10) 

Also from (10), we have 

𝑅(𝑋, 𝜉)𝜉 = 𝑋 − 𝜂(𝑋)𝜉.               (11) 

Taking the inner product both of the sides (5) with 𝜉 ∈ 𝜒(𝑀), we obtain  

𝜂(𝑅(𝑋, 𝑌)𝑍) = 𝑔(𝑌, 𝑍)𝜂(𝑋) − 𝑔(𝑋, 𝑍)𝜂(𝑌).            (12) 

In the same way we obtain from (6), (7) and (8) 

𝑍̃(𝜉, 𝑌)𝑍 = [1 −
𝜏

𝑛(𝑛−1)
] [𝑔(𝑌, 𝑍)𝜉 − 𝜂(𝑍)𝑌],            (13) 

𝑍̃(𝜉, 𝑌)𝜉 = [1 −
𝜏

𝑛(𝑛−1)
] [𝜂(𝑌)𝜉 − 𝑌],             (14) 

𝑃(𝜉, 𝑌)𝑍 = 𝑔(𝑌, 𝑍)𝜉 −
1

𝑛−1
[𝑆(𝑌, 𝑍)𝜉 + 𝜂(𝑍)𝑌],            (15) 

𝑃(𝜉, 𝑌)𝜉 =
1

𝑛−1
[𝜂(𝑌)𝜉 − 𝑌],               (16) 

𝐶̃(𝜉, 𝑌)𝑍 = [
4𝑎+𝑏[𝑐(𝑛−6)+7𝑛−6]

4
−

𝜏

𝑛
[

𝑎

𝑛−1
+ 2𝑏]] [𝑔(𝑌, 𝑍)𝜉 − 𝜂(𝑍)𝑌],          (17) 

𝐶̃(𝜉, 𝑌)𝜉 = [
4𝑎+𝑏[𝑐(𝑛−6)+7𝑛−6]

4
−

𝜏

𝑛
[

𝑎

𝑛−1
+ 2𝑏]] [𝜂(𝑌)𝜉 − 𝑌].            (18) 

Also here for the orthonormal basis {𝑒1, 𝑒2, … , 𝑒𝑛−1, 𝜉},  

𝑆(𝑋, 𝑌) = 𝑔(𝑅(𝑋, 𝑒𝑖)𝑒𝑖, 𝑌) + 𝑔(𝑅(𝑋, 𝜉)𝜉, 𝑌),                       (19) 
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with the help of (19), the Ricci tensor and the Ricci operator are given by  

𝑆(𝑋, 𝑌) = (
𝑐(𝑛−6)+3𝑛+2

4
) 𝑔(𝑋, 𝑌) +

𝑐(6−𝑛)+𝑛−10

4
𝜂(𝑋)𝜂(𝑌),          (20) 

and 

𝑄(𝑋) = (
𝑐(𝑛−6)+3𝑛+2

4
) 𝑋 +

𝑐(6−𝑛)+𝑛−10

4
𝜂(𝑋)𝜉.            (21) 

From here we can reach the following conclusion.  

Corollary 2.1. Every normal paracontact metric manifold with constant sectional curvature is an 

𝜂 −Einstien manifold.  

Also we choosing 𝑌 = 𝜉  in (20), we obtain  

𝑆(𝑋, 𝜉) = (𝑛 − 2)𝜂(𝑋),              (22) 

and from (21), we get  

𝑄𝜉 = (𝑛 − 2)𝜉.                (23) 

On the other hand the scaler curvature function of 𝑀is given by  

𝜏 =
(𝑛−1)[𝑐(𝑛−6)+3𝑛+4]−4

4
.               (24) 

3. A NORMAL PARACONTACT METRIC MANIFOLD SATISFYING CERTAIN 

CURVATURE CONDITIONS 

Theorem 3.1. Let 𝑀(𝑐) be 𝑛 −dimensional a normal paracontact metric manifold. Then 

𝑍̃(𝜉, 𝑋)𝑅 = 0 if and only if 𝑀 either is a real space form with constant sectional curvature 𝑐 = 1 

or the scalar curvature 𝜏 = 𝑛(𝑛 − 1). 

Proof: Let us suppose that 𝑍̃(𝜉, 𝑋)𝑅 = 0. Here we know that  

(𝑍̃(𝑋, 𝑌)𝑅)(𝑍, 𝑈, 𝑊) = 𝑍̃(𝑋, 𝑌)𝑅(𝑍, 𝑈)𝑊 − 𝑅(𝑍̃(𝑋, 𝑌)𝑍, 𝑈)𝑊 

                                   −𝑅(𝑍, 𝑍̃(𝑋, 𝑌)𝑈)𝑊 − 𝑅(𝑍, 𝑈)𝑍̃(𝑋, 𝑌)𝑊,         (25) 

for all 𝑋, 𝑌, 𝑍, 𝑈, 𝑊 ∈ 𝜒(𝑀). In (25), choosing 𝑋 = 𝜉, we obtain  

(𝑍̃(𝜉, 𝑌)𝑅)(𝑍, 𝑈, 𝑊) = 𝑍̃(𝜉, 𝑌)𝑅(𝑍, 𝑈)𝑊 − 𝑅(𝑍̃(𝜉, 𝑌)𝑍, 𝑈)𝑊 

                                   −𝑅(𝑍, 𝑍̃(𝜉, 𝑌)𝑈)𝑊 − 𝑅(𝑍, 𝑈)𝑍̃(𝜉, 𝑌)𝑊 = 0.         (26) 

Using (13) in (26), we obtain  
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0 = [1 −
𝜏

𝑛(𝑛 − 1)
] [𝑔(𝑌, 𝑅(𝑍, 𝑈)𝑊)𝜉 − 𝜂(𝑅(𝑍, 𝑈)𝑊)𝑌 

   −𝑔(𝑌, 𝑍)𝑅(𝜉, 𝑈)𝑊 + 𝜂(𝑍)𝑅(𝑌, 𝑈)𝑊 

   −𝑔(𝑌, 𝑈)𝑅(𝑍, 𝜉)𝑊 + 𝜂(𝑈)𝑅(𝑍, 𝑌)𝑊 

   −𝑔(𝑌, 𝑊)𝑅(𝑍, 𝑈)𝜉 + 𝜂(𝑊)𝑅(𝑍, 𝑈)𝑌].             (27) 

In (27) using (9), (10) and (12), we conclude  

[1 −
𝜏

𝑛(𝑛−1)
] [𝑅(𝑌, 𝑈)𝑊 − 𝑔(𝑈, 𝑊)𝑌 + 𝑔(𝑌, 𝑊)𝑈] = 0.           (28) 

This tell us that the scalar curvature of 𝑀 is 𝜏 = 𝑛(𝑛 − 1). On the other hand, from (28) we have  

𝑅(𝑌, 𝑈)𝑊 = 𝑔(𝑈, 𝑊)𝑌 − 𝑔(𝑌, 𝑊)𝑈,  

and this implies that 𝑀 is a real space form with constant sectional curvature 𝑐 = 1.  

The proves our assertion. The converse is obvious.  

Theorem 3.2.  Let 𝑀(𝑐) be 𝑛 −dimensional a normal paracontact metric manifold. Then 

𝑍̃(𝜉, 𝑌)𝑃 = 0 if and only if 𝑀 either is an Einstein manifold or the scalar curvature                 𝜏 =

𝑛(𝑛 − 1). 

Proof: Assume that 𝑍̃(𝜉, 𝑌)𝑃 = 0. Then we have  

(𝑍̃(𝜉, 𝑌)𝑃)(𝑍, 𝑈, 𝑊) = 𝑍̃(𝜉, 𝑌)𝑃(𝑍, 𝑈)𝑊 − 𝑃(𝑍̃(𝜉, 𝑌)𝑍, 𝑈)𝑊 

                                   −𝑃(𝑍, 𝑍̃(𝜉, 𝑌)𝑈)𝑊 − 𝑃(𝑍, 𝑈)𝑍̃(𝜉, 𝑌)𝑊 = 0,         (29) 

for all 𝑌, 𝑍, 𝑈, 𝑊 ∈ 𝜒(𝑀).  In (29)  using (13), we obtain  

0 = [1 −
𝜏

𝑛(𝑛 − 1)
] [𝑔(𝑌, 𝑃(𝑍, 𝑈)𝑊)𝜉 − 𝜂(𝑃(𝑍, 𝑈)𝑊)𝑌 

   −𝑔(𝑌, 𝑍)𝑃(𝜉, 𝑈)𝑊 + 𝜂(𝑍)𝑃(𝑌, 𝑈)𝑊 

   −𝑔(𝑌, 𝑈)𝑃(𝑍, 𝜉)𝑊 + 𝜂(𝑈)𝑃(𝑍, 𝑌)𝑊 

   −𝑔(𝑌, 𝑊)𝑃(𝑍, 𝑈)𝜉 + 𝜂(𝑊)𝑃(𝑍, 𝑈)𝑌].             (30) 

When using (15) and (16) in (30) and putting 𝑍 = 𝑊 = 𝜉 we obtain   

[1 −
𝜏

𝑛(𝑛−1)
] [

1

𝑛−1
𝑆(𝑌, 𝑈) − 𝑔(𝑌, 𝑈) +

1

𝑛−1
𝑔(𝑌, 𝑈)] = 0.           (31)  

Thus we have either from (31) 
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𝑆(𝑌, 𝑈) = (𝑛 − 2)𝑔(𝑌, 𝑈),               (32) 

or  

𝜏 = 𝑛(𝑛 − 1).                           (33) 

According to the equation (32) 𝑀 is an Einstein manifold. Also from (33) the scalar curvature of 

𝑀 is  𝜏 = 𝑛(𝑛 − 1). 

This proves our assertion. The converse is obvious.  

Theorem 3.2. Let 𝑀(𝑐) be 𝑛 −dimensional a normal paracontact metric manifold. Then 

𝑍̃(𝜉, 𝑌)𝑆 = 0 if and only if 𝑀 either is an Einstein manifold  or the scalar curvature                 

𝜏 = 𝑛(𝑛 − 1). 

Proof: Next we assume that 𝑍̃(𝜉, 𝑌)𝑆 = 0. Then we know  

−𝑆(𝑍(𝑋, 𝑌)𝑍, 𝑊) − 𝑆(𝑍, 𝑍̃(𝑋, 𝑌)𝑊) = 0,             (34) 

for all 𝑋, 𝑌, 𝑍, 𝑊 ∈ 𝜒(𝑀). In (34) putting 𝑋 = 𝜉, we have  

𝑆(𝑍̃(𝜉, 𝑌)𝑍, 𝑊) + 𝑆(𝑍, 𝑍̃(𝜉, 𝑌)𝑊) = 0.             (35) 

Using (13) in (35), we obtain  

[1 −
𝜏

𝑛(𝑛−1)
] [𝑆(𝑌, 𝑊) − (𝑛 − 2)𝑔(𝑌, 𝑊)] = 0.            (36) 

Thus 𝑀 either is an Einstein manifold or its scalar curvature 𝜏 = 𝑛(𝑛 − 1). 

Theorem 3.4. Let 𝑀(𝑐) be 𝑛 −dimensional a normal paracontact metric manifold. Then 

𝑍̃(𝜉, 𝑌)𝑍̃ = 0 if and only if the scalar curvature of 𝑀 is 𝜏 = 𝑛(𝑛 − 1). 

Proof: Assume that 𝑍̃(𝜉, 𝑌)𝑍̃ = 0, then we have  

(𝑍̃(𝜉, 𝑌)𝑍̃)(𝑍, 𝑈, 𝑊) = 𝑍̃(𝜉, 𝑌)𝑍(𝑍, 𝑈)𝑊 − 𝑍̃(𝑍̃(𝜉, 𝑌)𝑍, 𝑈)𝑊 

                                   −𝑍̃(𝑍, 𝑍̃(𝜉, 𝑌)𝑈)𝑊 − 𝑍̃(𝑍, 𝑈)𝑍̃(𝜉, 𝑌)𝑊 = 0,         (37) 

for all 𝑌, 𝑍, 𝑈, 𝑊 ∈ 𝜒(𝑀).  

Using (13) in (37), we obtain  

0 = [1 −
𝜏

𝑛(𝑛 − 1)
] [𝑔(𝑌, 𝑍̃(𝑍, 𝑈)𝑊)𝜉 − 𝜂(𝑍(𝑍, 𝑈)𝑊)𝑌 

   −𝑔(𝑌, 𝑍)𝑍̃(𝜉, 𝑈)𝑊 + 𝜂(𝑍)𝑍̃(𝑌, 𝑈)𝑊 
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   −𝑔(𝑌, 𝑈)𝑍̃(𝑍, 𝜉)𝑊 + 𝜂(𝑈)𝑍̃(𝑍, 𝑌)𝑊 

   −𝑔(𝑌, 𝑊)𝑍̃(𝑍, 𝑈)𝜉 + 𝜂(𝑊)𝑍̃(𝑍, 𝑈)𝑌].             (38) 

From the equations (13) and (14) and with direct calculation we obtain  

[1 −
𝜏

𝑛(𝑛−1)
]

2

= 0.                (39) 

This proves our assertion.  

Theorem 3.5. Let 𝑀(𝑐) be 𝑛 −dimensional a normal paracontact metric manifold. Then 

𝑍̃(𝜉, 𝑋)𝐶̃ = 0 if and only if 𝑀 (
4𝑎−𝑏𝑐(𝑛−6)+𝑏(𝑛−10)

4𝑎
) either is a real space form or the scalar 

curvature 𝜏 = 𝑛(𝑛 − 1). 

Proof: Assume that 𝑍̃(𝜉, 𝑌)𝐶̃ = 0, then we have  

(𝑍̃(𝜉, 𝑌)𝐶̃)(𝑍, 𝑈, 𝑊) = 𝑍̃(𝜉, 𝑌)𝐶̃(𝑍, 𝑈)𝑊 − 𝐶̃(𝑍̃(𝜉, 𝑌)𝑍, 𝑈)𝑊 

                                   −𝐶̃(𝑍, 𝑍̃(𝜉, 𝑌)𝑈)𝑊 − 𝐶̃(𝑍, 𝑈)𝑍̃(𝜉, 𝑌)𝑊 = 0,         (40) 

for all 𝑌, 𝑍, 𝑈, 𝑊 ∈ 𝜒(𝑀). From (13) we obtain, 

0 = [1 −
𝜏

𝑛(𝑛 − 1)
] [𝑔(𝑌, 𝐶̃(𝑍, 𝑈)𝑊)𝜉 − 𝜂(𝐶̃(𝑍, 𝑈)𝑊)𝑌 

   −𝑔(𝑌, 𝑍)𝐶̃(𝜉, 𝑈)𝑊 + 𝜂(𝑍)𝐶̃(𝑌, 𝑈)𝑊 

   −𝑔(𝑌, 𝑈)𝐶̃(𝑍, 𝜉)𝑊 + 𝜂(𝑈)𝐶̃(𝑍, 𝑌)𝑊 

   −𝑔(𝑌, 𝑊)𝐶̃(𝑍, 𝑈)𝜉 + 𝜂(𝑊)𝐶̃(𝑍, 𝑈)𝑌].             (41) 

Taking 𝑈 = 𝜉 in the above equation and by using (17) and (18), we have  

0 = [1 −
𝜏

𝑛(𝑛−1)
] [𝐶̃(𝑌, 𝑊)𝑍  

    − [
4𝑎+𝑏[𝑐(𝑛−6)+7𝑛−6]

4
−

𝑟

𝑛
[

𝑎

𝑛−1
+ 2𝑏]] [𝑔(𝑊, 𝑍)𝑌 − 𝑔(𝑌, 𝑍)𝑊]].    (42) 

By taking 𝑋 ⟶ 𝜙𝑋 and 𝑌 ⟶ 𝜙𝑌 and using (8), we get either  

[1 −
𝜏

𝑛(𝑛−1)
]  

or  
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𝑅(𝜙𝑋, 𝜙𝑊)𝑍 = [
4𝑎−𝑏𝑐(𝑛−6)+𝑏(𝑛−10)

4𝑎
] [𝑔(𝜙𝑊, 𝑍)𝜙𝑌 − 𝑔(𝜙𝑌, 𝑍)𝜙𝑊].  

 This completes our proof. The converse is obvious.  

CONCLUSION 

The concircular curvature tensor is the more a general form of the Riemann curvature tensor. Using 

this tensor, the conditions under which a normal paracontact metric manifold is reduced to an 

Einstein manifold or real space forms with constant sectional curvature 𝑐 = 1. 
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