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Abstract   

In this article, we  introduces the concept of the common fixed point theorem for three function in the 

revised fuzzy metric space for different applications in the revised fuzzy 2-metric space and revised fuzzy 

3-metric with examples. Here, too, the result is generalized and improved. 
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1. INTRODUCTION  

Alexander Sostak [1] introduced the concept of “George-Veeramani Fuzzy Metrics Revised” in 

2018 based on t-conorm. Later on Olga Grigorenko [7], Juan jose Minana, Alexander Sostak, 

Oscar Valero introduced “On  t-conorm based Fuzzy (Pseudo) metrics” [2020].  In 2020, 

Alexander Sostak and Tarkan Öner [9] initiate the concept of On Metric-Type Spaces Based on 

Extended T-Conorms. 

Then Muraliraj.A and Thangathamizh.R [3] first introduce the existence of fixed point sets in the 

fuzzy metric space, which were revised in 2021 based on tconorm. Muraliraj.A and 

Thangathamizh.R        [4 & 6] later prove the Banach and Edelstein contractions in the revised 

fuzzy metric space. In 2021, Muraliraj.A and Thangathamizh.R [5] introduce the concept of 

Revised fuzzy modular metric. 

2. PRELIMINARIES 

To initiate the concept of Revised fuzzy metric space, which was introduced by Alexander 

Sostak [1] in 2018 is recalled here. 

Definition 2.1: [7] A binary operation ⨁: [0, 1]  × [0, 1]  →  [0, 1] is a t-conorm if it satisfies 

the following conditions: 
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a) ⨁ is associative and commutative,                              

b) ⨁ is continuous,                                 

c)  𝑎 ⨁ 0 =  𝑎 for all 𝑎 ∈  [0, 1],                     

d)  𝑎 ⨁ 𝑏 ≤  𝑐 ⨁ 𝑑 whenever 𝑎 ≤  𝑐 and 𝑏 ≤  𝑑 for all 𝑎, 𝑏, 𝑐, 𝑑 ∈  [0, 1] 

Examples 2.2: [7] 

i.Lukasievicz t-conorm: 𝑎 ⨁ 𝑏 =  𝑚𝑎𝑥{𝑎 , 𝑏}                                                                          

ii.Product t-conorm: 𝑎 ⨁ 𝑏 =  𝑎 + 𝑏 − 𝑎𝑏                                                                            

iii.Minimum t-conorm: 𝑎 ⨁ 𝑏 =  𝑚𝑖𝑛(𝑎 + 𝑏, 1) 

Definition 2.3: [1] A Revised fuzzy metric space is an ordered triple (𝑋, 𝜇, ⨁) such that X is a 

nonempty set, ⨁ is a continuous t-conorm and 𝜇is a fuzzy set on  𝑋 ×  𝑋 × (0, ∞)  →  [0, 1] 

satisfies the following conditions: 

∀𝑥, 𝑦, 𝑧 ∈ 𝑋 𝑎𝑛𝑑 𝑠, 𝑡 >  0 

(RGV1) 𝜇(𝑥, 𝑦, 𝑡)  < 1 , ∀𝑡 >  0 

(RGV2) 𝜇(𝑥, 𝑦, 𝑡)  =  0 if and only if  𝑥 =  𝑦, 𝑡 >  0 

(RGV3) 𝜇(𝑥, 𝑦, 𝑡)  =  𝜇(𝑦, 𝑥, 𝑡) 

(RGV4) 𝜇(𝑥, 𝑧, 𝑡 +  𝑠)  ≤  𝜇(𝑥, 𝑦, 𝑡) ⨁ 𝜇(𝑦, 𝑧, 𝑠) 

(RGV5) 𝜇(𝑥, 𝑦, −): (0, ∞)  →  [0, 1) is continuous.  

Then 𝜇 is called a Revised fuzzy metric on 𝑋. 

Example 2.4: [1]  Let (𝑋, 𝑑) be a metric space. Define 𝑎 ⨁ 𝑏 =  𝑚𝑎𝑥{𝑎, 𝑏} for all 

𝑎, 𝑏 ∈ [0, 1], and define  𝜇 ∶  𝑋 ×  𝑋 × (0, ∞)  →  [0, 1] as 

𝜇(𝑥, 𝑦, 𝑡) =
𝑑(𝑥, 𝑦)

𝑡 + 𝑑(𝑥, 𝑦)
 

∀𝑥, 𝑦, 𝑧 ∈ 𝑋 𝑎𝑛𝑑  𝑡 >  0. Then (𝑋, 𝜇, ⨁) is a Revised fuzzy metric space.  

Definition 2.5: [1] Let (𝑋, 𝜇, ⨁) be a Revised fuzzy metric space, for 𝑡 >  0 the open ball 

𝐵(𝑥, 𝑟, 𝑡) with a centre 𝑥 ∈ 𝑋 and a  radius 0 < 𝑟 < 1 is defined by 

𝐵(𝑥, 𝑟, 𝑡)  =  {𝑦 ∈ 𝑋 ∶ 𝜇(𝑥, 𝑦, 𝑡)  < 𝑟 }. 

A subset 𝐴 ⊂ 𝑋 is called open if for each 𝑥 ∈ 𝐴, there exist 𝑡 >  0 and 0 < 𝑟 <  1 such that 

B(𝑥, 𝑟, 𝑡)  ⊂ 𝐴. Let 𝜏 denote the family of all open subsets of 𝑋. Then 𝜏 is topology on 𝑋, called 
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the topology induced by the Revised  fuzzy metric 𝜇. 

Definition 2.6: [3] Let (𝑋, 𝜇, ⨁) be a Revised fuzzy metric space, 

1. A sequence {𝑥𝑛} in 𝑋 is said to be convergent to a point 𝑥 ∈ 𝑋 if 

    𝑙𝑖𝑚𝑛→∞𝜇(𝑥, 𝑦, 𝑡)  =  0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 > 0. 

2. A sequence {𝑥𝑛} in 𝑋 is called a Cauchy sequence, if for each 0 < 𝜖 <  1 and 𝑡 >  0, there 

exists 𝑛0 ∈ ℕ such that 𝜇 (𝑥𝑛 , 𝑥𝑚, 𝑡)  < 𝜖 for each 𝑛, 𝑚 ≥ 𝑛0 

3. A Revised fuzzy metric space in which every Cauchy sequence is convergent is said to be 

complete. 

4. A Revised fuzzy metric space in which every sequence has a convergent subsequence is said 

to be compact. 

Lemma 2.7: [3] Let (𝑋, 𝜇, ⨁) be a Revised fuzzy metric space. For all 𝑢, 𝑣 ∈ 𝑋, 𝜇(𝑢, 𝑣, −) is  

non-increasing function. 

Definition 2.8: A function  𝜇 is continuous in revised fuzzy metric space iff whenever 𝑥𝑛 → 𝑥,  

𝑦𝑛 → 𝑦 then  

𝑙𝑖𝑚𝑛→∞𝜇(𝑥𝑛 , 𝑦𝑛 , 𝑡)  = 𝜇(𝑥, 𝑦, 𝑡)  

For each  𝑡 > 0. 

Definition 2.9: Two mappings A and S on revised fuzzy metric space X are weakly commuting 

iff,  

𝜇(𝐴𝑆𝑢, 𝑆𝐴𝑢, 𝑡) ≤ 𝜇(𝐴𝑢, 𝑆𝑢, 𝑡) 

For all 𝑢 ∈ 𝑋 and 𝑡 > 0. 

Definition 2.10 A binary operation  ⨁: [0, 1] × [0, 1] × [0, 1]  →  [0, 1]  is called a continuous     

t-conorm if ([0,1], ⨁) is an abelian topological monoid with unit 0 such that                 

𝑎1⨁ 𝑏1⨁ 𝑐1⨁ 𝑑1  ≤  𝑎2⨁ 𝑏2 ∗ 𝑐2⨁ 𝑑2 whenever 𝑎1  ≤  𝑎2, 𝑏1  ≤  𝑏2, 𝑐1  ≤  𝑐2, 𝑑1 ≤  𝑑2 for all 

𝑎1, 𝑎2, 𝑏1, 𝑏2, 𝑐1, 𝑐2 and 𝑑1, 𝑑2 are in[0, 1]. 

Definition 2.11: A Revised fuzzy 2-metric space is an ordered triple (𝑋, 𝜇, ⨁) such that X is a 

nonempty set, ⨁ is a continuous t-conorm and 𝜇 is a revised fuzzy set on  𝑋3  ×  (0, ∞)  →

 [0, 1] satisfies the following conditions:  ∀𝑥, 𝑦, 𝑧, 𝑢 ∈ 𝑋 𝑎𝑛𝑑 𝑡1, 𝑡2, 𝑡3 >  0 

(RGV1) 𝜇(𝑥, 𝑦, 𝑧, 𝑡)  < 1 , ∀𝑡 >  0 

(RGV2) 𝜇(𝑥, 𝑦, 𝑧, 𝑡)  =  0, 𝑡 >  0 and when at least two of the three points are equal 
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(symmetry about three variables) 

(RGV3) 𝜇(𝑥, 𝑦, 𝑧, 𝑡)  =  𝜇(𝑥, 𝑧, 𝑦, 𝑡) =  𝜇( 𝑦, 𝑧, 𝑥, 𝑡) 

(RGV4) 𝜇(𝑥, 𝑦, 𝑧, 𝑡1 + 𝑡2 + 𝑡3)  ≤  𝜇(𝑥, 𝑦, 𝑢, 𝑡1) ⨁ 𝜇(𝑥, 𝑢, 𝑧, 𝑡2)⨁ 𝜇(𝑢, 𝑦, 𝑧, 𝑡3)  

(This corresponds to tetrahedron inequality in 2-metric space).  

This function 𝑡 value  𝜇(𝑥, 𝑦, 𝑧, 𝑡) may be interpreted as the probability that area of triangle is 

less than 𝑡. 

(RGV5) 𝜇(𝑥, 𝑦, 𝑧, −): (0, ∞)  →  [0, 1) is right continuous.  

Then 𝜇 is called a Revised fuzzy 2-metric on 𝑋. 

Definition 2.12: Let (𝑋, 𝜇, ⨁) be a Revised fuzzy  2-metric space, 

1. A sequence {𝑥𝑛} in 𝑋 is said to be convergent to a point 𝑥 ∈ 𝑋 if 

    𝑙𝑖𝑚𝑛→∞𝜇(𝑥𝑛 , 𝑥, 𝑎, 𝑡)  =  0  for all 𝑎 ∈ 𝑋 and  𝑡 > 0. 

2. A sequence {𝑥𝑛} in 𝑋 is called a Cauchy sequence, if  

𝑙𝑖𝑚𝑛→∞𝜇(𝑥𝑛+𝑝, 𝑥𝑛 , 𝑎, 𝑡)  =  0  for all 𝑎 ∈ 𝑋 and  𝑡 > 0, and  𝑝 > 0. 

3. A Revised fuzzy 2-metric space in which every Cauchy sequence is convergent is said to be 

complete. 

4. A Revised fuzzy 2-metric space in which every sequence has a convergent subsequence is said 

to be compact. 

Definition 2.13: A function  𝜇 is continuous in revised fuzzy  2-metric space iff whenever                

𝑥𝑛 → 𝑥,  𝑦𝑛 → 𝑦 then  

𝑙𝑖𝑚𝑛→∞𝜇(𝑥𝑛, 𝑦𝑛 , 𝑎, 𝑡)  = 𝜇(𝑥, 𝑦, 𝑎, 𝑡)  

For all 𝑎 ∈ 𝑋 and 𝑡 > 0. 

Definition 2.14: Two mappings A and S on revised fuzzy 2-metric space X are weakly 

commuting iff,  

𝜇(𝐴𝑆𝑢, 𝑆𝐴𝑢, 𝑎, 𝑡) ≤ 𝜇(𝐴𝑢, 𝑆𝑢, 𝑎, 𝑡) 

For all 𝑢, 𝑎 ∈ 𝑋 and 𝑡 > 0. 

Definition 2.15: A binary operation  ⨁: [0, 1]4 →  [0, 1]  is called a continuous t-conorm  if 

([0,1], ⨁) is an abelian topological monoid with unit  0 such that  𝑎1⨁ 𝑏1⨁ 𝑐1⨁ 𝑑1  ≤
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 𝑎2⨁ 𝑏2 ∗ 𝑐2⨁ 𝑑2 whenever 𝑎1  ≤  𝑎2, 𝑏1  ≤  𝑏2, 𝑐1  ≤  𝑐2, 𝑑1 ≤  𝑑2 for all 𝑎1, 𝑎2, 𝑏1, 𝑏2, 𝑐1, 𝑐2 

and 𝑑1, 𝑑2 are in [0, 1]. 

Definition 2.16: A Revised fuzzy 3-metric space is an ordered triple (𝑋, 𝜇, ⨁) such that X is a 

nonempty set, ⨁ is a continuous t-conorm and 𝜇 is a fuzzy set on   𝑋3  ×  (0, ∞)  →  [0, 1] 

satisfies the following conditions: ∀𝑥, 𝑦, 𝑧, 𝑢 ∈ 𝑋 𝑎𝑛𝑑 𝑡1, 𝑡2, 𝑡3 >  0 

(RGV1) 𝜇(𝑥, 𝑦, 𝑧, 𝑤, 𝑡)  < 1 , ∀𝑡 >  0 

(RGV2) 𝜇(𝑥, 𝑦, 𝑧, 𝑤, 𝑡)  =  0, 𝑡 >  0 and when at least two of the three points are equal 

(symmetry about three variables) 

(RGV3) 𝜇(𝑥, 𝑦, 𝑧, 𝑤, 𝑡) =  𝜇(𝑥, 𝑤, 𝑧, 𝑦, 𝑡) =  𝜇( 𝑦, 𝑧, 𝑤, 𝑥, 𝑡) = 𝜇( 𝑧, 𝑤, 𝑥, 𝑦, 𝑡)… 

(RGV4) 𝜇(𝑥, 𝑦, 𝑧, 𝑡1 + 𝑡2 + 𝑡3 + 𝑡4)  ≤  {
𝜇(𝑥, 𝑦, 𝑧, 𝑢, 𝑡1)⨁𝜇(𝑥, 𝑦, 𝑢, 𝑤, 𝑡2)

⨁𝜇(𝑥, 𝑢, 𝑧, 𝑤, 𝑡3)⨁ 𝜇(𝑢, 𝑦, 𝑧, 𝑤, 𝑡4)
} 

(This corresponds to tetrahedron inequality in 2-metric space).  

This function 𝑡 value  𝜇(𝑥, 𝑦, 𝑧, 𝑤, 𝑡) may be interpreted as the probability that area of triangle is 

less than 𝑡. 

(RGV5) 𝜇(𝑥, 𝑦, 𝑧, 𝑤 −): (0, ∞)  →  [0, 1) is right continuous.  

Then 𝜇 is called a Revised fuzzy 3-metric on 𝑋. 

Definition 2.17:  Let (𝑋, 𝜇, ⨁) be a Revised fuzzy  3-metric space, 

1. A sequence {𝑥𝑛} in 𝑋 is said to be convergent to a point 𝑥 ∈ 𝑋 if 

    𝑙𝑖𝑚𝑛→∞𝜇(𝑥𝑛 , 𝑥, 𝑎, 𝑏, 𝑡)  =  0  for all 𝑎, 𝑏 ∈ 𝑋 and  𝑡 > 0. 

2. A sequence {𝑥𝑛} in 𝑋 is called a Cauchy sequence, if  

𝑙𝑖𝑚𝑛→∞𝜇(𝑥𝑛+𝑝, 𝑥𝑛 , 𝑎, 𝑏, 𝑡)  =  0  for all 𝑎, 𝑏 ∈ 𝑋 and  𝑡 > 0, and  𝑝 > 0. 

3. A Revised fuzzy 3-metric space in which every Cauchy sequence is convergent is said to be 

complete. 

4. A Revised fuzzy 3-metric space in which every sequence has a convergent subsequence is said 

to be compact. 

Definition 2.18: A function  𝜇 is continuous in revised fuzzy  3-metric space iff whenever 𝑥𝑛 →

𝑥,  𝑦𝑛 → 𝑦 then  

𝑙𝑖𝑚𝑛→∞𝜇(𝑥𝑛 , 𝑦𝑛 , 𝑎, 𝑏, 𝑡)  = 𝜇(𝑥, 𝑦, 𝑎, 𝑏, 𝑡)  

ISSN 2688-8300 (Print) ISSN 2644-3368 (Online) JMSCM, Vol.3, No.3, April, 2022

297 Journal of Mathematical Sciences & Computational Mathematics



For all 𝑎, 𝑏 ∈ 𝑋 and 𝑡 > 0. 

 

Definition 2.19: Two mappings A and S on revised fuzzy 3-metric space X are weakly 

commuting iff,  

𝜇(𝐴𝑆𝑢, 𝑆𝐴𝑢, 𝑎, 𝑏, 𝑡) ≤ 𝜇(𝐴𝑢, 𝑆𝑢, 𝑎, 𝑏, 𝑡) 

For all 𝑢, 𝑎, 𝑏 ∈ 𝑋 and 𝑡 > 0. 

Lemma 2.20: Let S and T be continuous mappings of a complete metric space (𝑋, 𝑑) into itself. 

Then S and T have a common fixed point in X iff, there exists a continuous mapping A of X into 

𝑆(𝑋)  ∩  𝑇(𝑋) which commute with S and T and satisfy :  

𝑑 (𝐴𝑥, 𝐴𝑦)  ≤  𝛼 𝑑 (𝑆𝑥, 𝑇𝑦)  

for all 𝑥, 𝑦 ∈ 𝑋 and 0 <  𝛼 <  1. Indeed S, T and A have a unique common fixed point. 

3. MAIN RESULTS 

Theorem 3.1: Let (𝑋, 𝜇, ⨁) be a complete Revised fuzzy metric space with the condition      

(RFM-6) and let S and T be continuous mappings of  X in X. Then S and T have a common fixed 

point in X, if there exists continuous mapping A and B of X into     𝑆(𝑋) ∩  𝑇(𝑋) which 

commute with S and T and  

𝜇(𝐴𝑥, 𝐵𝑦, 𝑘𝑡)  ≤ 𝑚𝑎𝑥 {
𝜇(𝑆𝑥, 𝑇𝑦, 𝑡), 𝜇(𝐴𝑥, 𝑆𝑥, 𝑡), 𝜇(𝐵𝑦, 𝑇𝑦, 𝑡),
𝜇(𝐴𝑥, 𝑇𝑦, 𝑡), 𝜇(𝐴𝑥, 𝐵𝑦, 𝑡), 𝜇(𝑆𝑥, 𝐵𝑦, 𝑡)

} 

For all 𝑥, 𝑦 ∈  𝑋, 𝑡 >  0 and 0 <  𝑞 <  1. Then A, B, S and T have a unique common fixed 

point in X. 

Proof : Let 𝑥0 be any arbitrary point in X. Construct a sequence {𝑦𝑛} in X such that           

𝑦2𝑛−1  =  𝑥2𝑛−1  =  𝐴𝑥2𝑛−1 and 𝑦2𝑛  =  𝑆𝑥2𝑛  =  𝐵𝑥2𝑛+1, 𝑛 =  1, 2, 3. .. This can be done by (i). 

By using contractive condition, we obtain,  

 𝜇(𝑦2𝑛+1, 𝑦2𝑛+2, 𝑘𝑡)  =  𝜇(𝐴𝑥2𝑛 , 𝐵𝑥2𝑛+1, 𝑘𝑡) 

                     ≤ 𝑚𝑎𝑥 {
𝜇(𝑆𝑥2𝑛 , 𝑇𝑥2𝑛+1, 𝑡), 𝜇(𝐴𝑥2𝑛 , 𝑆𝑥2𝑛 , 𝑡), 𝜇(𝐵𝑥2𝑛+1, 𝑇𝑥2𝑛+1, 𝑡),
𝜇(𝐴𝑥2𝑛 , 𝑇𝑥2𝑛+1, 𝑡), 𝜇(𝐴𝑥2𝑛 , 𝐵𝑥2𝑛+1, 𝑡), 𝜇(𝑆𝑥2𝑛 , 𝐵𝑥2𝑛+1, 𝑡)

} 

                                                 =  𝑚𝑎𝑥 {
𝜇(𝑦2𝑛 , 𝑦2𝑛+1, 𝑡), 𝜇(𝑦2𝑛+1, 𝑦2𝑛 , 𝑡), 𝜇(𝑦2𝑛 , 𝑦2𝑛+1, 𝑡),
𝜇(𝑦2𝑛+1, 𝑦2𝑛+1, 𝑡), 𝜇(𝑦2𝑛+1, 𝑦2𝑛 , 𝑡), 𝜇(𝑦2𝑛 , 𝑦2𝑛 , 𝑡) 

} 

                            =  𝑚𝑎𝑥 {
𝜇(𝑦2𝑛 , 𝑦2𝑛+1, 𝑡), 𝜇(𝑦2𝑛+1, 𝑦2𝑛 , 𝑡),

𝜇(𝑦2𝑛 , 𝑦2𝑛+1, 𝑡), 0, 𝜇(𝑦2𝑛+1, 𝑦2𝑛 , 𝑡), 0
}  
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      =  𝜇(𝑦2𝑛 , 𝑦2𝑛+1, 𝑡).  

That is,   𝜇(𝑦2𝑛+1, 𝑦2𝑛+2, 𝑡)  ≤  𝜇(𝑦2𝑛 , 𝑦2𝑛+1, 𝑡) 

Similarly, we have 𝜇(𝑦2𝑛 , 𝑦2𝑛+1, 𝑡)  ≤  𝜇(𝑦2𝑛−1, 𝑦2𝑛 , 𝑡), 

So, we get   𝜇(𝑦2𝑛+2, 𝑦2𝑛+1, 𝑘𝑡)  ≥  𝜇(𝑦2𝑛+1, 𝑦𝑛 , 𝑡)      (3.1.1)  

But (𝑋, 𝜇, ⨁) is complete.  

Hence, there exists a point z in X such that  {𝑦𝑛}  →  𝑧.  

Also, we have {𝐴𝑥2𝑛−2}, {𝑇𝑥2𝑛−1}, {𝑆𝑥2𝑛}, {𝐵𝑥2𝑛+1}  →  𝑧.  

Since, (𝐴, 𝑆) is compatible of type (K) and one of the mappings is continuous, using Definition 

(2.10),  

we get 𝐴𝑧 =  𝑆𝑧.                      (3.1.2)  

Since 𝐴 (𝑋) ⊆  𝑇 (𝑋), there exists a point u in X such that 𝐴𝑧 =  𝑇𝑢.  

Now, by contractive condition we get,  

𝜇(𝐴𝑧, 𝐵𝑢, 𝑘𝑡)  ≤ 𝑚𝑎𝑥 {
𝜇 (𝑆𝑧, 𝑇𝑢, 𝑡), 𝜇(𝐴𝑧, 𝑆𝑧, 𝑡), 𝜇(𝐵𝑢, 𝑇𝑢, 𝑡),
𝜇(𝐴𝑧, 𝑇𝑢, 𝑡), 𝜇(𝐴𝑧, 𝐵𝑢, 𝑡), 𝜇(𝑆𝑧, 𝐵𝑢, 𝑡)

} 

            =  𝑚𝑎𝑥 {
𝜇(𝐴𝑧, 𝐴𝑧, 𝑡), 𝜇(𝐴𝑧, 𝐴𝑧, 𝑡), 𝜇(𝐵𝑢, 𝐴𝑧, 𝑡),
 𝜇(𝐴𝑧, 𝐴𝑧, 𝑡), 𝜇(𝐴𝑧, 𝐴𝑢, 𝑡), 𝜇(𝐴𝑧, 𝐵𝑢, 𝑡)

} 

𝜇(𝐴𝑧, 𝐵𝑢, 𝑘𝑡)}  ≤ 𝜇(𝐴𝑧, 𝐵𝑢, 𝑡).         (3.1.3)  

Thus, we get 𝐴𝑧 =  𝑆𝑧 =  𝐵𝑢 = 𝑇𝑢.        (3.1.4)  

To prove 𝑃𝑧 =  𝑧, we have  

𝜇(𝐴𝑧, 𝐵𝑥2n+1, 𝑘𝑡)  ≤ 𝑚𝑎𝑥 {
𝜇(𝑆𝑧, 𝑇𝑥2n+1, 𝑡), 𝜇(𝐴𝑧, 𝑆𝑧, 𝑡), 𝜇(𝐵𝑥2n+1, 𝑇𝑥2n+1, 𝑡),
𝜇(𝐴𝑧, 𝑇𝑥2n+1, 𝑡), 𝜇(𝐴𝑧, 𝐵𝑥2n+1, 𝑡), 𝜇(𝑆𝑧, 𝐵𝑥2n+1, 𝑡)

} 

Taking limit as 𝑛 → ∞, we get  

 𝜇(𝐴𝑧, 𝑧, 𝑘𝑡)  ≤ 𝑚𝑎𝑥 {
𝜇(𝑆𝑧, 𝑧, 𝑡), 𝜇(𝐴𝑧, 𝑆𝑧, 𝑡), 𝜇(𝑧, 𝑧, 𝑡),
𝜇(𝐴𝑧, 𝑧, 𝑡), 𝜇(𝐴𝑧, 𝑧, 𝑡), 𝜇(𝑆𝑧, 𝑧, 𝑡)

} 

                     =  𝑚𝑎𝑥{𝜇(𝐴𝑧, 𝑧, 𝑡), 0, 0, 𝜇(𝐴𝑧, 𝑧, 𝑡), 𝜇(𝐴𝑧, 𝑧, 𝑡), 𝜇(𝐴𝑧, 𝑧, 𝑡)}  

𝜇(𝐴𝑧, 𝑧, 𝑘𝑡)  ≤ 𝜇(𝐴𝑧, 𝑧, 𝑡)         (3.1.5) 

Hence, we have 𝐴𝑧 =  𝑆𝑧 =  𝑧  
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So, z is a common fixed point of A and S.  

Also, we get 𝐵𝑢 = 𝑇𝑢 =  𝑧        (3.1.6)  

Since B and T are weakly compatible, we have 𝑇𝐵𝑢 = 𝐵𝑡𝑢. So, from (6), we get 𝑇𝑧 =  𝐵𝑧.  

            (3.1.7)  

Again, we get  

𝜇(𝐴𝑥2𝑛−2, 𝐵𝑧, 𝑘𝑡)  ≤ 𝑚𝑎𝑥 {
𝜇(𝑆𝑥2𝑛−2, 𝑇𝑧, 𝑡), 𝜇(𝐴𝑥2𝑛−2, 𝑆𝑥2𝑛−2, 𝑡), 𝜇(𝐵𝑧, 𝑇𝑧, 𝑡),
𝜇(𝐴𝑥2𝑛−2, 𝑇𝑧, 𝑡), 𝜇(𝐴𝑥2𝑛−2, 𝐵𝑧, 𝑡), 𝜇(𝑆𝑥2𝑛−2, 𝐵𝑧, 𝑡)

}.  

              𝜇(𝑧, 𝐵𝑧, 𝑘𝑡)  ≤ max {
𝜇(𝑧, 𝑇𝑧, 𝑡), 𝜇(𝑧, 𝑧, 𝑡), 𝜇(𝐵𝑧, 𝑇𝑧, 𝑡),

𝜇(𝑧, 𝑇𝑧, 𝑡), 𝜇(𝑧, 𝐵𝑧, 𝑡), 𝜇(𝑧, 𝐵𝑧, 𝑡)
} 

 =  𝑚𝑎𝑥{𝜇(𝑧, 𝐵𝑧, 𝑡), 0, 0, 𝜇(𝑧, 𝐵𝑧, 𝑡), 𝜇(𝑧, 𝐵𝑧, 𝑡), 𝜇(𝑧, 𝐵𝑧, 𝑡)} 

𝜇(𝑧, 𝐵𝑧, 𝑘𝑡)  ≤ 𝜇(𝑧, 𝐵𝑧, 𝑡).         (3.1.8)  

Therefore, we have 𝑇𝑧 =  𝐵𝑧 =  𝑧.        (3.1.9)  

Hence, we get that z is a common fixed point of B and T.  

From (3.1.5), (3.1.8) and (3.1.9),  

We get 𝐴𝑧 =  𝑆𝑧 =  𝐵𝑧 = 𝑇𝑧 =  𝑧.  

So z is a common fixed point of A, B, S, and T.  

For uniqueness, let w be the another common fixed point then   𝐴𝑤 =  𝐵𝑤 =  𝑆𝑤 =  𝑃𝑤 =  𝑤  

             𝜇(𝐴𝑧, 𝐵𝑤, 𝑘𝑡)  ≤  𝑚𝑎𝑥 {
𝜇(𝑆𝑧, 𝑇𝑤, 𝑡), 𝜇(𝐴𝑧, 𝑆𝑧, 𝑡), 𝜇(𝐵𝑤, 𝑇𝑤, 𝑡),
 𝜇(𝐴𝑧, 𝑇𝑤, 𝑡), 𝜇(𝐴𝑧, 𝐵𝑤, 𝑡), 𝜇(𝑆𝑧, 𝐵𝑤, 𝑡)

} 

=  𝑚𝑎𝑥{𝜇(𝐴𝑧, 𝐵𝑤, 𝑡), 0, 0, 𝜇(𝐴𝑧, 𝐴𝑤, 𝑡), 𝜇(𝐴𝑧, 𝐵𝑤, 𝑡), 𝜇(𝐴𝑧, 𝐵𝑤, 𝑡)}  

𝜇(𝐴𝑧, 𝐵𝑤, 𝑘𝑡)  ≤ 𝜇(𝐴𝑧, 𝐵𝑤, 𝑡).        (3.1.10)  

From (3.1.10), and Lemma (2.1.1), we get 𝐴𝑧 =  𝐵𝑤, this implies𝐴𝑧 =  𝐴𝑤 Hence z is a unique 

fixed point.  

COROLLARY 3.2  

Let (𝑋, 𝜇, ⨁) be a complete Revised fuzzy 2- metric space with the condition (FM-6) and let S 

and T be continuous mappings of  X in X, then S and T have a common fixed point in X, if there 

exists continuous mapping A and B of X into 𝑆(𝑋) ∩  𝑇(𝑋) which commute with S and T and  
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𝜇(𝐴𝑥, 𝐵𝑦, 𝑘𝑡)  ≤  𝑚𝑎𝑥 {
 𝜇(𝑆𝑥, 𝑇𝑦, 𝑡), 𝜇(𝐴𝑥, 𝑆𝑥, 𝑡), 𝜇(𝐵𝑦, 𝑇𝑦, 𝑡),
 𝜇(𝐴𝑥, 𝑇𝑦, 𝑡), 𝜇(𝐴𝑥, 𝐵𝑦, 𝑡), 𝜇(𝑆𝑥, 𝐵𝑦, 𝑡)

} 

For all x, y ∈  X, t >  0 𝑎𝑛𝑑 0 <  𝑞 <  1.   

Then A, B, S and T have a unique common fixed point in X. 

COROLLARY 3.3  

Let (𝑋, 𝜇, ⨁) be a complete Revised fuzzy 3-metric space with the condition (FM-6) and let S 

and T be continuous mappings of X in X. Then S and T have a common fixed point in X, if there 

exists a continuous mapping A of X into 𝑆(𝑋) ∩ 𝑇(𝑋) which commute with S and T, and  

𝜇(𝐴𝑥, 𝐴𝑦, 𝑘𝑡)  ≤ 𝑚𝑎𝑥 {
 𝜇(𝑆𝑥, 𝑇𝑦, 𝑡), 𝜇(𝐴𝑥, 𝑆𝑥, 𝑡), 𝜇(𝐴𝑦, 𝑇𝑦, 𝑡),
 𝜇(𝐴𝑥, 𝑇𝑦, 𝑡), 𝜇(𝐴𝑥, 𝐴𝑦, 𝑡), 𝜇(𝑆𝑥, 𝐴𝑦, 𝑡)

} 

For all 𝑥, 𝑦 ∈  𝑋, 𝑡 >  0 and  0 <  𝑞 <  1, then A, S and T have a unique common fixed point 

in X.  
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