APPLICATION OF COMMON FIXED POINT THEOREM ON REVISED FUZZY METRIC SPACE

¹Dr. A. Murali Raj and ^{2*}R. Thangathamizh

¹Assistant Professor, PG & Research Department of Mathematics, Urumu Dhanalakshmi College, Bharathidasan University, Trichy, India.

²Research Scholar,PG & Research Department of Mathematics Urumu Dhanalakshmi College, Bharathidasan University, Trichy, India. ^{*}Corresponding Author Email id: thamizh1418@gmail.com

Abstract

In this article, we introduces the concept of the common fixed point theorem for three function in the revised fuzzy metric space for different applications in the revised fuzzy 2-metric space and revised fuzzy 3-metric with examples. Here, too, the result is generalized and improved.

Keywords: Revised fuzzy metric space, complete, continuous, fixed point

1. INTRODUCTION

Alexander Sostak [1] introduced the concept of "George-Veeramani Fuzzy Metrics Revised" in 2018 based on t-conorm. Later on Olga Grigorenko [7], Juan jose Minana, Alexander Sostak, Oscar Valero introduced "On t-conorm based Fuzzy (Pseudo) metrics" [2020]. In 2020, Alexander Sostak and Tarkan Öner [9] initiate the concept of On Metric-Type Spaces Based on Extended T-Conorms.

Then Muraliraj.A and Thangathamizh.R [3] first introduce the existence of fixed point sets in the fuzzy metric space, which were revised in 2021 based on tconorm. Muraliraj.A and Thangathamizh.R [4 & 6] later prove the Banach and Edelstein contractions in the revised fuzzy metric space. In 2021, Muraliraj.A and Thangathamizh.R [5] introduce the concept of Revised fuzzy modular metric.

2. PRELIMINARIES

To initiate the concept of Revised fuzzy metric space, which was introduced by Alexander Sostak [1] in 2018 is recalled here.

Definition 2.1: [7] A binary operation $\oplus : [0,1] \times [0,1] \rightarrow [0,1]$ is a t-conorm if it satisfies the following conditions:

a) \oplus is associative and commutative,

b) \oplus is continuous,

c) $a \oplus 0 = a$ for all $a \in [0, 1]$,

d) $a \oplus b \leq c \oplus d$ whenever $a \leq c$ and $b \leq d$ for all $a, b, c, d \in [0, 1]$

Examples 2.2: [7]

i.Lukasievicz	t-conorm:	$a \oplus b = max\{a, b\}$
ii.Product	t-conorm:	$a \oplus b = a + b - ab$
iii.Minimum t-conorm: a	$\oplus b = min(a+b,1)$	

Definition 2.3: [1] A Revised fuzzy metric space is an ordered triple (X, μ, \bigoplus) such that X is a nonempty set, \bigoplus is a continuous t-conorm and μ is a fuzzy set on $X \times X \times (0, \infty) \rightarrow [0, 1]$ satisfies the following conditions:

$$\forall x, y, z \in X \text{ and } s, t > 0$$

$$(RGV1) \mu(x, y, t) < 1, \forall t > 0$$

$$(RGV2) \mu(x, y, t) = 0 \text{ if and only if } x = y, t > 0$$

$$(RGV3) \mu(x, y, t) = \mu(y, x, t)$$

$$(RGV4) \mu(x, z, t + s) \leq \mu(x, y, t) \oplus \mu(y, z, s)$$

$$(RGV5) \mu(x, y, -): (0, \infty) \rightarrow [0, 1) \text{ is continuous.}$$

Then μ is called a Revised fuzzy metric on *X*.

Example 2.4: [1] Let (X, d) be a metric space. Define $a \oplus b = max\{a, b\}$ for all $a, b \in [0, 1]$, and define $\mu : X \times X \times (0, \infty) \rightarrow [0, 1]$ as

$$\mu(x, y, t) = \frac{d(x, y)}{t + d(x, y)}$$

 $\forall x, y, z \in X \text{ and } t > 0$. Then (X, μ, \oplus) is a Revised fuzzy metric space.

Definition 2.5: [1] Let (X, μ, \oplus) be a Revised fuzzy metric space, for t > 0 the open ball B(x, r, t) with a centre $x \in X$ and a radius 0 < r < 1 is defined by

$$B(x,r,t) = \{y \in X : \mu(x,y,t) < r\}.$$

A subset $A \subset X$ is called open if for each $x \in A$, there exist t > 0 and 0 < r < 1 such that $B(x,r,t) \subset A$. Let τ denote the family of all open subsets of X. Then τ is topology on X, called

the topology induced by the Revised fuzzy metric μ .

Definition 2.6: [3] Let (X, μ, \oplus) be a Revised fuzzy metric space,

1. A sequence $\{x_n\}$ in X is said to be convergent to a point $x \in X$ if

$$\lim_{n\to\infty}\mu(x,y,t) = 0 \text{ for all } t > 0.$$

2. A sequence $\{x_n\}$ in X is called a Cauchy sequence, if for each $0 < \epsilon < 1$ and t > 0, there exists $n_0 \in \mathbb{N}$ such that $\mu(x_n, x_m, t) < \epsilon$ for each $n, m \ge n_0$

3. A Revised fuzzy metric space in which every Cauchy sequence is convergent is said to be complete.

4. A Revised fuzzy metric space in which every sequence has a convergent subsequence is said to be compact.

Lemma 2.7: [3] Let (X, μ, \oplus) be a Revised fuzzy metric space. For all $u, v \in X, \mu(u, v, -)$ is non-increasing function.

Definition 2.8: A function μ is continuous in revised fuzzy metric space iff whenever $x_n \to x$, $y_n \to y$ then

$$\lim_{n \to \infty} \mu(x_n, y_n, t) = \mu(x, y, t)$$

For each t > 0.

Definition 2.9: Two mappings A and S on revised fuzzy metric space X are weakly commuting iff,

 $\mu(ASu, SAu, t) \le \mu(Au, Su, t)$

For all $u \in X$ and t > 0.

Definition 2.10 A binary operation $\oplus : [0,1] \times [0,1] \times [0,1] \rightarrow [0,1]$ is called a continuous t-conorm if $([0,1], \oplus)$ is an abelian topological monoid with unit 0 such that $a_1 \oplus b_1 \oplus c_1 \oplus d_1 \le a_2 \oplus b_2 * c_2 \oplus d_2$ whenever $a_1 \le a_2, b_1 \le b_2, c_1 \le c_2, d_1 \le d_2$ for all $a_1, a_2, b_1, b_2, c_1, c_2$ and d_1, d_2 are in[0, 1].

Definition 2.11: A Revised fuzzy 2-metric space is an ordered triple (X, μ, \oplus) such that X is a nonempty set, \oplus is a continuous t-conorm and μ is a revised fuzzy set on $X^3 \times (0, \infty) \rightarrow [0, 1]$ satisfies the following conditions: $\forall x, y, z, u \in X$ and $t_1, t_2, t_3 > 0$

 $(\text{RGV1}) \mu(x, y, z, t) < 1, \forall t > 0$

(RGV2) $\mu(x, y, z, t) = 0, t > 0$ and when at least two of the three points are equal

(symmetry about three variables)

$$(\text{RGV3}) \mu(x, y, z, t) = \mu(x, z, y, t) = \mu(y, z, x, t)$$
$$(\text{RGV4}) \mu(x, y, z, t_1 + t_2 + t_3) \le \mu(x, y, u, t_1) \oplus \mu(x, u, z, t_2) \oplus \mu(u, y, z, t_3)$$

(This corresponds to tetrahedron inequality in 2-metric space).

This function t value $\mu(x, y, z, t)$ may be interpreted as the probability that area of triangle is less than t.

(RGV5) $\mu(x, y, z, -): (0, \infty) \rightarrow [0, 1)$ is right continuous.

Then μ is called a Revised fuzzy 2-metric on *X*.

Definition 2.12: Let (X, μ, \oplus) be a Revised fuzzy 2-metric space,

1. A sequence $\{x_n\}$ in X is said to be convergent to a point $x \in X$ if

$$\lim_{n\to\infty}\mu(x_n, x, a, t) = 0$$
 for all $a \in X$ and $t > 0$.

2. A sequence $\{x_n\}$ in X is called a Cauchy sequence, if

 $\lim_{n\to\infty}\mu(x_{n+p}, x_n, a, t) = 0$ for all $a \in X$ and t > 0, and p > 0.

3. A Revised fuzzy 2-metric space in which every Cauchy sequence is convergent is said to be complete.

4. A Revised fuzzy 2-metric space in which every sequence has a convergent subsequence is said to be compact.

Definition 2.13: A function μ is continuous in revised fuzzy 2-metric space iff whenever $x_n \to x$, $y_n \to y$ then

$$\lim_{n\to\infty}\mu(x_n, y_n, a, t) = \mu(x, y, a, t)$$

For all $a \in X$ and t > 0.

Definition 2.14: Two mappings A and S on revised fuzzy 2-metric space X are weakly commuting iff,

$$\mu(ASu, SAu, a, t) \le \mu(Au, Su, a, t)$$

For all $u, a \in X$ and t > 0.

Definition 2.15: A binary operation $\oplus : [0,1]^4 \to [0,1]$ is called a continuous t-conorm if $([0,1], \oplus)$ is an abelian topological monoid with unit 0 such that $a_1 \oplus b_1 \oplus c_1 \oplus d_1 \leq 0$

JMSCM, Vol.3, No.3, April, 2022

 $a_2 \oplus b_2 * c_2 \oplus d_2$ whenever $a_1 \le a_2, b_1 \le b_2, c_1 \le c_2, d_1 \le d_2$ for all $a_1, a_2, b_1, b_2, c_1, c_2$ and d_1, d_2 are in [0, 1].

Definition 2.16: A Revised fuzzy 3-metric space is an ordered triple (X, μ, \oplus) such that X is a nonempty set, \oplus is a continuous t-conorm and μ is a fuzzy set on $X^3 \times (0, \infty) \rightarrow [0, 1]$ satisfies the following conditions: $\forall x, y, z, u \in X$ and $t_1, t_2, t_3 > 0$

 $(\text{RGV1})\,\mu(x, y, z, w, t) < 1, \forall t > 0$

(RGV2) $\mu(x, y, z, w, t) = 0, t > 0$ and when at least two of the three points are equal (symmetry about three variables)

$$(\text{RGV3}) \ \mu(x, y, z, w, t) = \ \mu(x, w, z, y, t) = \ \mu(y, z, w, x, t) = \ \mu(z, w, x, y, t)...$$
$$(\text{RGV4}) \qquad \mu(x, y, z, t_1 + t_2 + t_3 + t_4) \le \begin{cases} \mu(x, y, z, u, t_1) \oplus \mu(x, y, u, w, t_2) \\ \oplus \mu(x, u, z, w, t_3) \oplus \ \mu(u, y, z, w, t_4) \end{cases}$$

(This corresponds to tetrahedron inequality in 2-metric space).

This function t value $\mu(x, y, z, w, t)$ may be interpreted as the probability that area of triangle is less than t.

(RGV5) $\mu(x, y, z, w -)$: $(0, \infty) \rightarrow [0, 1)$ is right continuous.

Then μ is called a Revised fuzzy 3-metric on X.

Definition 2.17: Let (X, μ, \oplus) be a Revised fuzzy 3-metric space,

1. A sequence $\{x_n\}$ in X is said to be convergent to a point $x \in X$ if

 $\lim_{n\to\infty}\mu(x_n, x, a, b, t) = 0$ for all $a, b \in X$ and t > 0.

2. A sequence $\{x_n\}$ in X is called a Cauchy sequence, if

 $\lim_{n\to\infty}\mu(x_{n+p}, x_n, a, b, t) = 0$ for all $a, b \in X$ and t > 0, and p > 0.

3. A Revised fuzzy 3-metric space in which every Cauchy sequence is convergent is said to be complete.

4. A Revised fuzzy 3-metric space in which every sequence has a convergent subsequence is said to be compact.

Definition 2.18: A function μ is continuous in revised fuzzy 3-metric space iff whenever $x_n \rightarrow x$, $y_n \rightarrow y$ then

$$\lim_{n \to \infty} \mu(x_n, y_n, a, b, t) = \mu(x, y, a, b, t)$$

For all $a, b \in X$ and t > 0.

Definition 2.19: Two mappings A and S on revised fuzzy 3-metric space X are weakly commuting iff,

$$\mu(ASu, SAu, a, b, t) \leq \mu(Au, Su, a, b, t)$$

For all $u, a, b \in X$ and t > 0.

Lemma 2.20: Let S and T be continuous mappings of a complete metric space (X, d) into itself. Then S and T have a common fixed point in X iff, there exists a continuous mapping A of X into $S(X) \cap T(X)$ which commute with S and T and satisfy :

$$d(Ax, Ay) \leq \alpha d(Sx, Ty)$$

for all $x, y \in X$ and $0 < \alpha < 1$. Indeed S, T and A have a unique common fixed point.

3. MAIN RESULTS

Theorem 3.1: Let (X, μ, \oplus) be a complete Revised fuzzy metric space with the condition (RFM-6) and let S and T be continuous mappings of X in X. Then S and T have a common fixed point in X, if there exists continuous mapping A and B of X into $S(X) \cap T(X)$ which commute with S and T and

$$\mu(Ax, By, kt) \leq max \begin{cases} \mu(Sx, Ty, t), \mu(Ax, Sx, t), \mu(By, Ty, t), \\ \mu(Ax, Ty, t), \mu(Ax, By, t), \mu(Sx, By, t) \end{cases}$$

For all $x, y \in X, t > 0$ and 0 < q < 1. Then A, B, S and T have a unique common fixed point in X.

Proof:Let x_0 be any arbitrary point in X. Construct a sequence $\{y_n\}$ in X such that $y_{2n-1} = x_{2n-1} = Ax_{2n-1}$ and $y_{2n} = Sx_{2n} = Bx_{2n+1}$, n = 1, 2, 3... This can be done by (i). By using contractive condition, we obtain,

$$\mu(y_{2n+1}, y_{2n+2}, kt) = \mu(Ax_{2n}, Bx_{2n+1}, kt)$$

$$\leq max \begin{cases} \mu(Sx_{2n}, Tx_{2n+1}, t), \mu(Ax_{2n}, Sx_{2n}, t), \mu(Bx_{2n+1}, Tx_{2n+1}, t), \\ \mu(Ax_{2n}, Tx_{2n+1}, t), \mu(Ax_{2n}, Bx_{2n+1}, t), \mu(Sx_{2n}, Bx_{2n+1}, t) \end{cases}$$

$$= max \begin{cases} \mu(y_{2n}, y_{2n+1}, t), \mu(y_{2n+1}, y_{2n}, t), \mu(y_{2n}, y_{2n+1}, t), \\ \mu(y_{2n+1}, y_{2n+1}, t), \mu(y_{2n+1}, y_{2n}, t), \mu(y_{2n}, y_{2n}, t) \end{cases}$$

$$= max \begin{cases} \mu(y_{2n}, y_{2n+1}, t), \mu(y_{2n+1}, y_{2n}, t), \mu(y_{2n}, y_{2n}, t) \end{cases}$$

$$= \mu(y_{2n}, y_{2n+1}, t).$$

That is, $\mu(y_{2n+1}, y_{2n+2}, t) \leq \mu(y_{2n}, y_{2n+1}, t)$

Similarly, we have
$$\mu(y_{2n}, y_{2n+1}, t) \leq \mu(y_{2n-1}, y_{2n}, t)$$
,

So, we get
$$\mu(y_{2n+2}, y_{2n+1}, kt) \ge \mu(y_{2n+1}, y_n, t)$$
 (3.1.1)

But (X, μ, \oplus) is complete.

Hence, there exists a point z in X such that $\{y_n\} \rightarrow z$.

Also, we have $\{Ax_{2n-2}\}, \{Tx_{2n-1}\}, \{Sx_{2n}\}, \{Bx_{2n+1}\} \rightarrow z$.

Since, (A, S) is compatible of type (K) and one of the mappings is continuous, using Definition (2.10),

we get
$$Az = Sz$$
. (3.1.2)

Since $A(X) \subseteq T(X)$, there exists a point u in X such that Az = Tu.

Now, by contractive condition we get,

$$\mu(Az, Bu, kt) \leq max \begin{cases} \mu(Sz, Tu, t), \mu(Az, Sz, t), \mu(Bu, Tu, t), \\ \mu(Az, Tu, t), \mu(Az, Bu, t), \mu(Sz, Bu, t) \end{cases}$$

= $max \begin{cases} \mu(Az, Az, t), \mu(Az, Az, t), \mu(Bu, Az, t), \\ \mu(Az, Az, t), \mu(Az, Au, t), \mu(Az, Bu, t) \end{cases}$

$$\mu(Az, Bu, kt)\} \le \mu(Az, Bu, t). \tag{3.1.3}$$

Thus, we get Az = Sz = Bu = Tu. (3.1.4)

To prove Pz = z, we have

$$\mu(Az, Bx_{2n+1}, kt) \leq max \begin{cases} \mu(Sz, Tx_{2n+1}, t), \mu(Az, Sz, t), \mu(Bx_{2n+1}, Tx_{2n+1}, t), \\ \mu(Az, Tx_{2n+1}, t), \mu(Az, Bx_{2n+1}, t), \mu(Sz, Bx_{2n+1}, t) \end{cases}$$

Taking limit as $n \to \infty$, we get

$$\mu(Az, z, kt) \leq max \begin{cases} \mu(Sz, z, t), \mu(Az, Sz, t), \mu(z, z, t), \\ \mu(Az, z, t), \mu(Az, z, t), \mu(Sz, z, t) \end{cases}$$

= max{\mu(Az, z, t), 0, 0, \mu(Az, z, t), \mu(Az, z, t), \mu(Az, z, t), \mu(Az, z, t), \mu(Az, z, t))}
$$\mu(Az, z, kt) \leq \mu(Az, z, t) \qquad (3.1.5)$$

Hence, we have Az = Sz = z

So, z is a common fixed point of A and S.

Also, we get
$$Bu = Tu = z$$
 (3.1.6)

Since B and T are weakly compatible, we have TBu = Btu. So, from (6), we get Tz = Bz. (3.1.7)

Again, we get

$$\mu(Ax_{2n-2}, Bz, kt) \leq max \begin{cases} \mu(Sx_{2n-2}, Tz, t), \mu(Ax_{2n-2}, Sx_{2n-2}, t), \mu(Bz, Tz, t), \\ \mu(Ax_{2n-2}, Tz, t), \mu(Ax_{2n-2}, Bz, t), \mu(Sx_{2n-2}, Bz, t) \end{cases}$$

$$\mu(z, Bz, kt) \leq max \begin{cases} \mu(z, Tz, t), \mu(z, z, t), \mu(Bz, Tz, t), \\ \mu(z, Tz, t), \mu(z, Bz, t), \mu(z, Bz, t) \end{cases}$$

$$= max \{ \mu(z, Bz, t), 0, 0, \mu(z, Bz, t), \mu(z, Bz, t), \mu(z, Bz, t) \}$$

$$\mu(z, Bz, kt) \leq \mu(z, Bz, t). \qquad (3.1.8)$$

Therefore, we have Tz = Bz = z. (3.1.9)

Hence, we get that z is a common fixed point of B and T.

From (3.1.5), (3.1.8) and (3.1.9),

We get Az = Sz = Bz = Tz = z.

So z is a common fixed point of A, B, S, and T.

For uniqueness, let w be the another common fixed point then Aw = Bw = Sw = Pw = w

$$\mu(Az, Bw, kt) \leq max \begin{cases} \mu(Sz, Tw, t), \mu(Az, Sz, t), \mu(Bw, Tw, t), \\ \mu(Az, Tw, t), \mu(Az, Bw, t), \mu(Sz, Bw, t) \end{cases}$$

= max{\mu(Az, Bw, t), 0, 0, \mu(Az, Aw, t), \mu(Az, Bw, t), \m

 $\mu(Az, Bw, kt) \leq \mu(Az, Bw, t).$

From (3.1.10), and Lemma (2.1.1), we get Az = Bw, this implies Az = Aw Hence z is a unique fixed point.

COROLLARY 3.2

Let (X, μ, \bigoplus) be a complete Revised fuzzy 2- metric space with the condition (FM-6) and let S and T be continuous mappings of X in X, then S and T have a common fixed point in X, if there exists continuous mapping A and B of X into $S(X) \cap T(X)$ which commute with S and T and

(3.1.10)

$$\mu(Ax, By, kt) \leq max \begin{cases} \mu(Sx, Ty, t), \mu(Ax, Sx, t), \mu(By, Ty, t), \\ \mu(Ax, Ty, t), \mu(Ax, By, t), \mu(Sx, By, t) \end{cases}$$

For all x, $y \in X$, t > 0 and 0 < q < 1.

Then A, B, S and T have a unique common fixed point in X.

COROLLARY 3.3

Let (X, μ, \bigoplus) be a complete Revised fuzzy 3-metric space with the condition (FM-6) and let S and T be continuous mappings of X in X. Then S and T have a common fixed point in X, if there exists a continuous mapping A of X into $S(X) \cap T(X)$ which commute with S and T, and

$$\mu(Ax, Ay, kt) \leq max \begin{cases} \mu(Sx, Ty, t), \mu(Ax, Sx, t), \mu(Ay, Ty, t), \\ \mu(Ax, Ty, t), \mu(Ax, Ay, t), \mu(Sx, Ay, t) \end{cases}$$

For all $x, y \in X, t > 0$ and 0 < q < 1, then A, S and T have a unique common fixed point in X.

References

[1] Alexander Sostak "George-Veeramani Fuzzy Metrics Revised" Axioms 2018,7,60; doi:10.3390/axioms7030060.

[2] Bose, B. K., Sahani, D." *Fuzzy mappings and fixed point theorems*", Fuzzy Sets and Systems, 21, 53-58 (1987).

[3] Muraliraj. A and Thangathamizh. R "Fixed point theorems in revised fuzzy metric space", http://dx.doi.org/10.17654/FS026020103.

[4] Muraliraj. A and Thangathamizh. R "Fixed point theorems in revised fuzzy metric space", JMSCM, Vol.3, No.1, October, 2021.

[5] Muraliraj. A and Thangathamizh, R "*Introduction Revised fuzzy modular spaces*", ISSN 0973-1768 Volume 17, Number 2 (2021), pp. 303-317.

[6] Muraliraj. A and Thangathamizh. R, "*Relation-theoretic revised fuzzy Banach contraction principle and revised fuzzy Eldestein contraction theorem*", JMSCM, Vol.3, No.2, January, 2022.

[7] Olga Grigorenko, Juan joseMinana, Alexander Sostak, Oscar Valero "On t-conorm based Fuzzy (Pseudo) metrics", Axioms 2020, 9, 78;doi:10.3390/axioms9030078.

[8] Scheweizer, B., Skalar, A. "Statistical Metric Spaces", Pacific Journal Math., 10, 313-334 (1960).

[9] Tarkan Öner and Alexander Sostak "On Metric-Type Spaces Based on Extended T-Conorms" Mathematics 2020, 8, 1097; doi:10.3390/math8071097.

[10] Zadeh, L.A."Fuzzy Sets", Inform. And Control, 8, 338-353 (1965).