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Abstract  

It will be shown that solve an equation two-dimensional Volterra nonlinear can be solved numerically 

applying the techniques of inverse generalized moments problem in two steps writing the Volterra's 

equation as a Klein-Gordon equation of the form 𝑤𝑡𝑡 − 𝑤𝑥𝑥 = 𝐻(𝑥, 𝑡), which 𝐻(𝑥, 𝑡)  it is unknown. In a 

first step, 𝐻(𝑥, 𝑡)  is numerically approximate, and in a second step we numerically approximate the 

solution of Klein-Gordon equation using the 𝐻(𝑥, 𝑡) previously approximated.The method is illustrated 

with examples. 
 

Keywords: Klein-Gordon, nonlinear Volterra integral equations, generalized moment problem, inverse 

problem. 

 

INTRODUCTION 

 

We want to find    𝑤(𝑥, 𝑡)    such that 

         𝑤(𝑥, 𝑡)  − ∫ ∫ 𝐾(𝑥, 𝑡, 𝑦, 𝑧, 𝑤(𝑦, 𝑧))𝑑𝑦𝑑𝑧
𝑥

0

𝑡

0
= 𝑓(𝑥, 𝑡)   (𝑥, 𝑦) 𝜖 𝐷  

Where 𝑤(𝑥, 𝑡)  is unknown function  and the functions   𝑓(𝑥, 𝑡)   known continuous about a D 

domain where  𝐷 = {(𝑥, 𝑡); 𝑥 > 0 , 𝑡 > 0} and 𝐾(𝑥, 𝑡, 𝑦, 𝑧, 𝑤) known  continuous about a E  

domain where  𝐸 = {(𝑥, 𝑡, 𝑦, 𝑧); 0 ≤ 𝑦 ≤ 𝑥, 0 ≤ 𝑧 ≤ 𝑡 , 𝑥 > 0 , 𝑡 > 0, −∞ < 𝑤 < ∞}. 

 

Also f and K are r times continuously differentiable over D and E respectively with r = 2. In that 

case the solution w will be r = 2 times continuously differentiable over D. 

The underlying space is  𝐿2(𝐷)   
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Note that 

𝑤(0, 𝑡) = 𝑓(0, 𝑡)    ,     𝑤(𝑥, 0) = 𝑓(𝑥, 0)   𝑡 ≥ 0  ,    𝑥 ≥ 0 

 

                                                𝑤𝑥(0, 𝑡) ,  𝑤𝑡(𝑥, 0) 𝑡 ≥ 0   ,    𝑥 ≥ 0    they are known 

 

Integral equations is a special topic in Applied Mathematics, as they constitute an important tool 

to model many problems in fields such as engineering, astrophysics, chemistry, quantum 

mechanics and many other fields. They are also applied in initial condition and boundary value 

problems for partial differential equations. 

With so many applications, integral equations have been extensively studied. 

For example in [1] is investigated a collocation method for the approximate solution of 

Hammerstein integral equations in two dimensions. In [2] a numerical technique based on the Sinc 

collocation method is presented for the solution of two-dimensional Volterra integral equations of 

first and second kinds. The Sinc function properties are provided and the global convergence 

analysis is obtained to guarantee the efficiently of our method. In [3] a class of two-dimensional 

linear and nonlinear Volterra integral equations is solved by means of an analytic technique, 

namely the Homotopy analysis method (HAM). In [4] a numerical iterative algorithm based on 

combination of the successive approximations method and the quadrature formula for solving two-

dimensional nonlinear Volterra integral equations is proposed. This algorithm uses a trapezoidal 

quadrature rule for Lipschitzian functions applied at each iterative step. 

In paper [5], we develop two-step collocation (2-SC) methods to solve two-dimensional nonlinear 

Volterra integral equations (2D-NVIEs) of the second kind. Here we convert a 2D-NVIE of the 

second kind to a one-dimensional case, and then we solve the resulting equation numerically by 

two-step collocation methods. 

In [6] the approximate solutions for two different type of two-dimensional nonlinear integral 

equations: two-dimensional nonlinear Volterra-Fredholm integral equations and the nonlinear 

mixed Volterra-Fredholm integral equations are obtained using the Laguerre wavelet method. To 

do this, these two-dimensional nonlinear integral equations are transformed into a system of 

nonlinear algebraic equations in matrix form. 

In [7] se proponen new theorems of the reduced differential transform method (RDTM) for solving 

a class of two-dimensional linear and nonlinear Volterra integral equations (VIEs) of the second 

kind.  

In [8] the rational Haar wavelet method has been used to solve the two-dimensional Volterra 

integral equations. Numerical solutions and the rate of convergence, are presented. 
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In [9] Using fixed-point techniques and Faber Schauder systems in Banach spaces, is obtained an 

approximation of the solution of two-dimensional nonlinear Volterra, Fredholm and mixed 

Volterra-Fredholm integral equations. 

The objective of this work is to show that we can solve the problem using the techniques of inverse 

moments problem. We focus the study on the numerical approximation. 

The interest is not to compare with the existing methods, but to present a different method to my 

novel criteria. 

The generalized moments problem [10,11,12], is to find a function  𝑓(𝑥) about a domain Ω ⊂

 𝑅𝑑    that satisfies the sequence of equations 

                                                         𝜇𝑖 = ∫ 𝑔𝑖Ω
(𝑥)𝑓(𝑥)𝑑𝑥      𝑖𝜖𝑁 − − − − − − − − − −   (1) 

where N is the set of the natural numbers, (𝑔𝑖(𝑥)) is a given sequence of functions in 𝐿2(Ω) linearly 

independent known and the succession of real numbers {𝜇𝑖}𝑖𝜖𝑁 are known data.  

The moments problem is an ill-conditioned problem in the sense that there may be no solution and 

if there is no continuous dependence on the given data [10,11,12]. There are several methods to 

build regularized solutions. One of them is the truncated expansion method [10].  

This method is to approximate (1) with the finite moments problem   

                                                       𝜇𝑖 = ∫ 𝑔𝑖Ω
(𝑥)𝑓(𝑥)𝑑𝑥      𝑖 = 1,2, … , 𝑛. − − − − − − −  (2) 

where it is considered as approximate solution of  to 𝑝 𝑛(𝑥) = ∑ 𝜆𝑖
𝑛
𝑖=0 𝜙𝑖(𝑥) , and the functions 

{𝜙𝑖(𝑥)}𝑖=1,..,𝑛  result of orthonormalize 〈𝑔1, 𝑔2, … , 𝑔𝑛〉  being 𝜆𝑖  the  coefficients based on the data 

𝜇𝑖 .  In the subspace generated by 〈𝑔1, 𝑔2, … , 𝑔𝑛〉 the solution is stable. If 𝑛 𝜖 𝑁 is chosen in an 

appropriate way then the solution of (2) it approaches the solution of the problem (1).  

In the case where the data 𝜇𝑖are inaccurate the convergence theorems should be applied and error 

estimates for the regularized solution (pages 19 - 30 of [10]). 

 

ARTICLE ORGANIZATION 

 

To find  𝑤(𝑥, 𝑡)   

  𝑤(𝑥, 𝑡)  − ∫ ∫ 𝐾(𝑥, 𝑡, 𝑦, 𝑧, 𝑤(𝑦, 𝑧))𝑑𝑦𝑑𝑧
𝑥

0

𝑡

0
= 𝑓(𝑥, 𝑡)   (𝑥, 𝑦) 𝜖 𝐷  

Where 𝑤(𝑥, 𝑡)   is unknown function  and the function   𝑓(𝑥, 𝑡)   known continuous about a D 

domain where  𝐷 = {(𝑥, 𝑡); 𝑥 > 0 , 𝑡 > 0} and 𝐾(𝑥, 𝑡, 𝑦, 𝑧, 𝑤) known  continuous about a E  
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domain where  𝐸 = {(𝑥, 𝑡, 𝑦, 𝑧); 0 ≤ 𝑦 ≤ 𝑥, 0 ≤ 𝑧 ≤ 𝑡 , 𝑥 > 0 , 𝑡 > 0, −∞ < 𝑤 < ∞} 

 

𝑤(0, 𝑡) = 𝑓(0, 𝑡)    ,     𝑤(𝑥, 0) = 𝑓(𝑥, 0)   𝑡 ≥ 0     𝑥 ≥ 0 

 

                                                          𝑤𝑥(0, 𝑡) ,  𝑤𝑡(𝑥, 0) 𝑡 ≥ 0       𝑥 ≥ 0      they are known 

 

We will do it in two steps. The next section describes the first step.  

The section that follows explains the second step. Then it is explained how the generalized moment 

problem is solved with the truncated expansion method. 

Finally the numerical example and the conclusions. 

FIRST STEP 

We consider 

𝑤(𝑥, 𝑡)  − ∫ ∫ 𝐾(𝑥, 𝑡, 𝑦, 𝑧, 𝑤(𝑦, 𝑧))𝑑𝑦𝑑𝑧
𝑥

0

𝑡

0

= 𝑓(𝑥, 𝑡)     − − − − −     (3) 

We differentiate (3) with respect to t twice: 

 

𝑤𝑡𝑡(𝑥, 𝑡)  = (∫ ∫ 𝐾(𝑥, 𝑡, 𝑦, 𝑧, 𝑤(𝑦, 𝑧))𝑑𝑦𝑑𝑧
𝑥

0

𝑡

0

)
𝑡𝑡

+ 𝑓𝑡𝑡(𝑥, 𝑡) = 𝑅(𝑥, 𝑡)     

 

𝑤𝑡𝑡(𝑥, 𝑡)  − 𝑤𝑥𝑥(𝑥, 𝑡) = 𝑅(𝑥, 𝑡) − 𝑤𝑥𝑥(𝑥, 𝑡) = 𝐻(𝑥, 𝑡)   

the conditions are: 

 

                                                   𝑤(0, 𝑡) = 𝑓(0, 𝑡)    ,     𝑤(𝑥, 0) = 𝑓(𝑥, 0)   𝑡 ≥ 0   𝑥 ≥ 0 

Note that 

𝑤𝑡(𝑥, 𝑡) = ∫ ∫ 𝐾𝑡(𝑥, 𝑡, 𝑦, 𝑧, 𝑤(𝑦, 𝑧))𝑑𝑦𝑑𝑧 + ∫ 𝐾(𝑥, 𝑡, 𝑦, 𝑡, 𝑤(𝑦, 𝑡))𝑑𝑦 + 𝑓𝑡

𝑥

0

𝑥

0

𝑡

0

(𝑥, 𝑡) 

Therefore 

                                                  𝑤𝑡(𝑥, 0) = ∫ 𝐾(𝑥
𝑥

0
, 0, 𝑦, 0, 𝑤(𝑦, 0))𝑑𝑦 + 𝑓𝑡(𝑥, 0)   

Analogously            
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                                       𝑤𝑥(0, 𝑡) = ∫ 𝐾(0
𝑡

0
, 𝑡, 0, 𝑧, 𝑤(0, 𝑡))𝑑𝑧 + 𝑓𝑥(0, 𝑡)  

 

That is   𝑤𝑥(0, 𝑡)    𝑡 ≥ 0 ,  𝑤𝑡(𝑥, 0)     𝒙 ≥ 0      they are known 

 

 

We take as an auxiliary function 

𝑢(𝑚, 𝑟, 𝑥, 𝑡) = 𝑒−𝑚𝑥𝑒−𝑟𝑡 

 

Note that   𝑢𝑥𝑥 = 𝑚2𝑢 and 𝑢𝑡𝑡 = 𝑟2𝑢. 

 

We consider 

𝑤𝑥𝑥(𝑥, 𝑡) − 𝑤𝑡𝑡 (𝑥, 𝑡)  = −𝐻(𝑥, 𝑡)   

 

We define the vector field 

𝐹∗ = (𝐹1(𝑤), 𝐹2(𝑤)) = (𝑤𝑥 , −𝑤𝑡) 

Since 𝑑𝑖𝑣(𝐹∗) = −𝐻(𝑥, 𝑡) we have to: 

 

∬ 𝑢
𝐷

𝑑𝑖𝑣(𝐹∗)𝑑𝐴 = ∬ 𝑢
𝐷

(−𝐻(𝑥, 𝑡))𝑑𝐴 

 

In addition, as  𝑢𝑑𝑖𝑣(𝐹∗) = 𝑑𝑖𝑣(𝑢𝐹∗) − 𝐹∗. 𝛻𝑢, so 

 

∬ 𝑢
𝐷

𝑑𝑖𝑣(𝐹∗)𝑑𝐴 = ∬ 𝑑𝑖𝑣(𝑢𝐹∗)𝑑𝐴
𝐷

− ∬ 𝐹∗

𝐷

. 𝛻𝑢𝑑𝐴 

 

Where 𝛻𝑢 = (𝑢𝑥 , 𝑢𝑡).  

And 
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∬ 𝐹∗

𝐷

. 𝛻𝑢𝑑𝐴 = ∬ (𝐹1𝑢𝑥 + 𝐹2𝑢𝑡)𝑑𝐴
𝐷

 

 

Integrating by parts with respect to 𝑥: 

∬ 𝐹1
𝐷

𝑢𝑥𝑑𝐴 = ∫ ∫ 𝐹1

∞

0

∞

0

𝑢𝑥𝑑𝑥𝑑𝑡 = 

= ∫ (−𝑤(𝑎1, 𝑡)𝑢𝑥(𝑚, 𝑟, 𝑎1, 𝑡))𝑑𝑡
∞

0

− ∬ 𝑤𝑢𝑥𝑥
𝐷

𝑑𝐴 = 

∫ (−𝑤(0, 𝑡)𝑢𝑥(𝑚, 𝑟, 0, 𝑡))𝑑𝑡
∞

0

− ∬ 𝑤
𝐷

(𝑚)2𝑢𝑑𝐴 

Analogously 

∬ 𝐹2
𝐷

𝑢𝑡𝑑𝐴 = ∫ ∫ 𝐹2

∞

0

∞

0

𝑢𝑡𝑑𝑥𝑑𝑡 = ∫ (−𝑤(𝑥, 0)𝑢𝑡(𝑚, 𝑟, 𝑥, 0))𝑑𝑡
∞

0

− ∫ ∫ 𝑤(𝑟)2𝑢𝑑𝑥𝑑𝑡
∞

0

∞

0

 

then 

∬ 𝐹∗

𝐷

. 𝛻𝑢𝑑𝐴 = ∫ (−𝑤(0, 𝑡)𝑢𝑥(𝑚, 𝑟, 0, 𝑡))𝑑𝑡
∞

0

− 

 

− ∫ (−𝑤(𝑥, 0)𝑢𝑡(𝑚, 𝑟, 𝑥, 0))𝑑𝑡
∞

0

− ∬ 𝑤
𝐷

𝑢(𝑚2 − 𝑟2)𝑑𝐴 = 𝐴(𝑚, 𝑟) 

 

On the other hand, 

∫(𝑢𝐹∗)
𝐶

. 𝑛𝑑𝑠 = 

= ∫ 𝑢(𝑚, 𝑟, 𝑥, 0)𝑤𝑡(𝑥, 0)𝑑𝑥
∞

0

− ∫ 𝑢(𝑚, 𝑟, 0, 𝑡)𝑤𝑥(0, 𝑡)𝑑𝑡
∞

0

= 𝐺(𝑚, 𝑟) 

 

∴ ∬ 𝑢 (−𝐻(𝑥, 𝑡))𝑑𝐴 = 𝐺(𝑚, 𝑟) − 𝐴(𝑚, 𝑟) + ∬ 𝑤
𝐷

𝑢(𝑚2 − 𝑟2)𝑑𝐴 
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So if we do 𝑟 = 𝑚: 

∬ 𝑢 (−𝐻(𝑥, 𝑡))𝑑𝐴 = 𝐺(𝑚, 𝑚) − 𝐴(𝑚, 𝑚) 

That is 

∬ 𝑢 (𝐻(𝑥, 𝑡))𝑑𝐴 = −𝐺(𝑚, 𝑚) + 𝐴(𝑚, 𝑚) = 𝜙(𝑚) 

To solve this integral equation we give integer values to 𝑚, 𝑚 = 0,1,2, … 𝑛 

Then 

∫ 𝐻(𝑥, 𝑡)𝑅𝑚(𝑥, 𝑡)𝑑𝑥
∞

𝑎1

= 𝜙(𝑚) = 𝜇𝑚 − − − − − − − (4) 

We interpret (4) as a generalized moments problem. 

𝑝1𝑛(𝑥, 𝑡)  is the numerical approximation found with the truncated expansion method for  𝐻(𝑥, 𝑡), 

with   𝑅𝑚(𝑥, 𝑡) = 𝑢(𝑚, 𝑚, 𝑥, 𝑡) = 𝑒−𝑚𝑥  𝑒−𝑚𝑡  𝑚 = 0,1,2, … 𝑛   where n   is conveniently chosen. 

In section 4 the truncated expansion method will be explained in detail and a theorem will be given 

that explains what is the accuracy of the approximation found by this method. 

 

APPROACH TO    𝑤(𝑥, 𝑡) - SECOND STEP 

To find an approximation of 𝑤(𝑥, 𝑡) a similar approach to the previous one is made where 

𝐻(𝑥, 𝑡)  is replaced by 𝑝1𝑛(𝑥) and we do not consider  𝑟 = 𝑚. 

We take the auxiliary function   𝑢(𝑚, 𝑟, 𝑥, 𝑡) = 𝑒−(𝑚+1)𝑥𝑒−(𝑟+1)𝑡. 

Note that    𝑢𝑥𝑥 = (𝑚 + 1)2𝑢 and 𝑢𝑡𝑡 = (𝑟 + 1)2𝑢. 

We define the vector field    𝐹∗ = (𝐹1(𝑤), 𝐹2(𝑤)) = (𝑤𝑥 , −𝑤𝑡) 

Since   𝑑𝑖𝑣(𝐹∗) = −𝐻(𝑥, 𝑡) we have to: 

∬ 𝑢
𝐷

𝑑𝑖𝑣(𝐹∗)𝑑𝐴 = ∬ 𝑢
𝐷

(−𝐻(𝑥, 𝑡))𝑑𝐴 

In addition, as    𝑢𝑑𝑖𝑣(𝐹∗) = 𝑑𝑖𝑣(𝑢𝐹∗) − 𝐹∗. 𝛻𝑢, so: 

∬ 𝑢
𝐷

𝑑𝑖𝑣(𝐹∗)𝑑𝐴 = ∬ 𝑑𝑖𝑣(𝑢𝐹∗)𝑑𝐴
𝐷

− ∬ 𝐹∗

𝐷

. 𝛻𝑢𝑑𝐴 
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Thus 

∴ ∬ 𝑢 (−𝐻(𝑥, 𝑡))𝑑𝐴 = 𝐺(𝑚, 𝑟) − 𝐴(𝑚, 𝑟) + ∬ 𝑤
𝐷

𝑢((𝑚 + 1)2 − (𝑟 + 1)2)𝑑𝐴 

Then 

∬ 𝑤
𝐷

𝑢((𝑚 + 1)2 − (𝑟 + 1)2)𝑑𝐴 = −𝐺(𝑚, 𝑟) + 𝐴(𝑚, 𝑟) + ∬ 𝑢
𝐷

𝐻(𝑥, 𝑡)𝑑𝐴 

where 𝐺(𝑚, 𝑟) 𝑦 𝐴(𝑚, 𝑟)  they are like before. 

We replace 𝐻(𝑥, 𝑡) by  𝑝1𝑛(𝑥)  and then 

∬ 𝑤(𝑥, 𝑡)𝐻𝑚𝑟(𝑥, 𝑡)𝑑𝐴
𝐷

=
−𝐺(𝑚, 𝑟) + 𝐴(𝑚, 𝑟) + ∬ 𝑢

𝐷
𝑝1𝑛(𝑥) 𝑑𝐴

((𝑚 + 1)2 − (𝑟 + 1)2)
= 𝜙(𝑚, 𝑟)

= 𝜇𝑚𝑟 − − − −(5) 

 

where 

𝐻𝑚,𝑟(𝑥) = 𝑢(𝑚, 𝑟, 𝑥, 𝑡) 

We can consider (5) as a two-dimensional generalized moment problem if we discretize giving m 

and r non-negative integer values  𝑚 = 0,1,2, … 𝑛1  ;  𝑟 = 0,1,2, … , 𝑛2, where 𝑛1  and 𝑛2 are 

conveniently chosen. 

An approximation 𝑝2𝑛(𝑥, 𝑡)   is found by the truncated expansion method for  𝑤(𝑥, 𝑡) where 𝑛 =

𝑛1 × 𝑛2. 

 

SOLUTION OF THE GENERALIZED MOMENTS PROBLEM 

We can apply the detailed truncated expansion method in [12] and generalized in [13] and [14] to 

find an approximation 𝑝𝑛(𝑥, 𝑡) for the corresponding finite problem with  𝑖 = 0,1,2, … , 𝑛 where n 

is the number of moments  μi. We consider the basis   𝜙𝑖(𝑥, 𝑡) 𝑖 = 0,1,2, … , 𝑛   obtained by 

applying the Gram-Schmidt orthonormalization process on  𝐻𝑖(𝑥, 𝑡) 𝑖 = 0,1,2, … , 𝑛. 

We approximate the solution   w(x, t)   with [12] and generalized in [13] y [14]: 

𝑝𝑛(𝑥, 𝑡) = ∑ 𝜆𝑖𝜙𝑖(𝑥, 𝑡)

𝑛

𝑖=0

 

where 
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𝜆𝑖 = ∑ 𝐶𝑖𝑗

𝑖

𝑗=0

𝜇𝑗      𝑖 = 0,1,2, … , 𝑛 

And the coefficients  𝐶𝑖𝑗   verify 

𝐶𝑖𝑗 = (∑(−1)
〈𝐻𝑖(𝑥, 𝑡)|𝜙𝑘(𝑥, 𝑡)〉

‖𝜙𝑘(𝑥, 𝑡)‖2

𝑖−1

𝑘=𝑗

𝐶𝑘𝑗) . ‖𝜙𝑖(𝑥, 𝑡)‖−1   1 < 𝑖 ≤ 𝑛 ; 1 ≤ 𝑗 < 𝑖 . 

The terms of the diagonal are ‖𝜙𝑖(𝑥, 𝑡)‖−1  𝑖 = 0,1, … , 𝑛 . 

The proof of the following theorem is in [14,15].  

In [15] the demonstration is made for b2 finite. If 𝑏2   = ∞ instead of taking the Legendre 

polynomials we take the Laguerre polynomials. En [16] the demonstration is made for the one-

dimensional case. 

This Theorem gives a measure about the accuracy of the approximation. 

 

Theorem 

We considerer 𝑏1 =  𝑏2 = ∞. 

Sea {𝜇𝑖}𝑖=0
𝑛  be a set of real numbers and suppose that  𝑓(𝑥, 𝑡) 𝜖 𝐿2((𝑎1, 𝑏1) × (𝑎2, 𝑏2)) for two 

positive numbers 𝜀 and M verify: 

∑ |∬ 𝐻𝑖
𝐸

(𝑥, 𝑡)𝑓(𝑥, 𝑡)𝑑𝑡𝑑𝑥 − 𝜇𝑖|

2

≤ 𝜀2         .

𝑛

𝑖=0

 

 

                                 ∬ (𝑥
𝐸

𝑓𝑥
2 + 𝑡 𝑓𝑡

2 ) 𝐸𝑥𝑝[𝑥 + 𝑡]𝑑𝑡𝑑𝑥 ≤ 𝑀2 − − − − − − − (6). 

And it must be fulfilled that 

 

    𝑡𝑖𝑓(𝑥, 𝑡) → 0     si     𝑡 → ∞      para todo    𝑖 ∈ 𝑁 

 

then 
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∫ ∫ |𝑓(𝑥, 𝑡)|2
𝑏2

𝑎2

𝑏1

𝑎1

𝑑𝑡𝑑𝑥 ≤ 𝑚𝑖𝑛𝑖 {‖𝐶𝑇𝐶‖𝜀2 +
1

8(𝑛 + 1)2
𝑀2; 𝑖 = 0,1, … , 𝑛} 

 

where C it is a triangular matrix with elements 𝐶𝑖𝑗  (1 < 𝑖 ≤ 𝑛;  1 ≤ 𝑗 < 𝑖) 

and 

 

                            ∫ ∫ |𝑓(𝑥, 𝑡) − 𝑝𝑛(𝑥, 𝑡)|2𝑏2

𝑎2

𝑏1

𝑎1
𝑑𝑡𝑑𝑥 ≤ ‖𝐶𝑇𝐶‖𝜀2 +

1

8(𝑛+1)2 𝑀2. 

 

If 𝑏2 it is not infinite then (6) change by 

 

∫ ∫ ((𝑏1 − 𝑎1)2𝑓𝑥
2 + (𝑏2 − 𝑎2)2𝑓𝑡

2)𝑑𝑥
𝑏1

𝑎1

𝑑𝑡
𝑏2

𝑎2

≤ 𝑀2 

 

 

NUMERICAL EXAMPLES 

Example 1 

We consider the equation 

𝑤(𝑥, 𝑡) − ∫ ∫ 𝑒−(𝑥+𝑦)√𝑤(𝑦, 𝑧)𝑑𝑦𝑑𝑧
𝑥

0

𝑡

0
= 𝑒−𝑡−

𝑥2

20 − 2𝑒10−
𝑡
2

−𝑥(−1 + 𝑒
𝑡
2)√10𝜋 (𝐸𝑟𝑓(√10) +

𝐸𝑟𝑓(
−20+𝑥

2√10
))  

 

whose solution is: 𝑤(𝑥, 𝑡) = 𝑒−𝑡−
𝑥2

20 

 

we take n=5 moments and is approaching 𝑝1𝑛(𝑥, 𝑡)  ≈ 𝐻(𝑥, 𝑡) where the accuracy is  

 

∫ ∫ 𝑒−𝑥−𝑡
∞

0

∞

0

(𝑝1𝑛(𝑥, 𝑡) − 𝐻(𝑥, 𝑡))2𝑑𝑡𝑑𝑥 = 0.170473 
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We consider this norm since the basis is 𝑒−𝑚𝑥  𝑒−𝑚𝑡  𝑚 = 1,2, … 5.    

 

In the Fig.1 the graphics of:  𝑝15(𝑥, 𝑡) (magenta color) and 𝐻(𝑥, 𝑡) (light blue color) are 

superimposed. 

 

we take 𝑛 = 6  moments and is approaching 𝑤(𝑥, 𝑡)  where the accuracy is 

 

 

∫ ∫ 𝑒−2𝑥−3𝑡(𝑝26(𝑥, 𝑡) − 𝑤(𝑥, 𝑡))
2

∞

0

∞

0

𝑑𝑡𝑑𝑥 = 0.00899724 

 

We consider this norm since the basis is {𝑒−3𝑡−2𝑥 , 𝑒−4𝑡−2𝑥 , 𝑒−4𝑡−3𝑥 , 𝑒−5𝑡−3𝑥 , 𝑒−5𝑡−4𝑥 , 𝑒−6𝑡−4𝑥}. 

 

In the Fig. 2 the graphics 

of:𝑝26(𝑥)(magenta color) and 𝑤(𝑥, 𝑡) (light blue color)  are  superimposed. 

 

                                         

 

                                                            Fig. 1:  𝒑𝟏𝟓(𝒙, 𝒕) and 𝑯(𝒙, 𝒕) example 1 
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                                                                 Fig. 2:    𝒘(𝒙, 𝒕) 𝐚𝐧𝐝 𝒑𝟐𝟔(𝒙, 𝒕) 𝐞𝐱𝐚𝐦𝐩𝐥𝐞 𝟏 

 

Example 2 

We consider the equation 

𝑤(𝑥, 𝑡) − ∫ ∫ (𝑠𝑖𝑛(𝑥) + 2)𝑒−(𝑥−𝑦)√𝑤(𝑦, 𝑧)𝑑𝑦𝑑𝑧 =
𝑒−𝑥−𝑡

1 + 𝑥

𝑥

0

𝑡

0

 

− 2√2 [−2𝑒−𝑥(1 − 𝑒−𝑡
2)𝐷𝑎𝑤𝑠𝑜𝑛𝐹 (

1

√2
)

− 2√1 + 𝑥 (√
𝑒−𝑥−𝑡

1 + 𝑥
 − √

𝑒−𝑥

1 + 𝑥
) 𝐷𝑎𝑤𝑠𝑜𝑛𝐹 (√

1 + 𝑥

2
)] (2 + 𝑠𝑖𝑛(𝑥)) 

whose solution is:𝑤(𝑥, 𝑡) =
𝑒−(𝑡+𝑥)     

1+𝑥
 

we take n=5 moments and is approaching 𝑝1𝑛(𝑥, 𝑡)  ≈ 𝐻(𝑥, 𝑡) where the accuracy is  

 

∫ ∫ 𝑒−𝑥−𝑡
∞

0

∞

0

(𝑝1𝑛(𝑥, 𝑡) − 𝐻(𝑥, 𝑡))2𝑑𝑡𝑑𝑥 = 0.237494 

 

We consider this norm since the basis is  𝑒−𝑚𝑥  𝑒−𝑚𝑡  𝑚 = 1,2, … 5.    

In the Fig.1 the graphics of:  𝑝
15

(𝑥, 𝑡) (magenta color) and 𝐻(𝑥, 𝑡) (light blue color) are 

superimposed. 

we take 𝑛 = 6  moments and is approaching 𝑤(𝑥, 𝑡)  where the accuracy is 
 

∫ ∫ 𝑒−2𝑥−3𝑡(𝑝26(𝑥, 𝑡) − 𝑤(𝑥, 𝑡))
2

∞

0

∞

0

𝑑𝑡𝑑𝑥 = 0.00838925 

 

We consider this norm since the basis is  {𝑒−3𝑡−2𝑥 , 𝑒−4𝑡−2𝑥 , 𝑒−4𝑡−3𝑥 , 𝑒−5𝑡−3𝑥 , 𝑒−5𝑡−4𝑥 , 𝑒−6𝑡−4𝑥}. 

In the Fig. 4 the graphics of:𝑝26(𝑥)(magenta color) and 𝜑(𝑥) (light blue color)  are  superimposed.                                      
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                                                                  Fig. 3:  𝒑𝟏𝟓(𝒙) and  𝑯(𝒙, 𝒕) example 2 

 

                

 

                                                        Fig. 4:𝒘(𝒙, 𝒕) 𝐚𝐧𝐝 𝒑𝟐𝟔(𝒙, 𝒕) 𝐞𝐱𝐚𝐦𝐩𝐥𝐞 𝟐 

 

CONCLUSION 

 

To find  𝑤(𝑥, 𝑡)   

                                          𝑤(𝑥, 𝑡)  − ∫ ∫ 𝐾(𝑥, 𝑡, 𝑦, 𝑧, 𝑤(𝑦, 𝑧))𝑑𝑦𝑑𝑧
𝑥

0

𝑡

0
= 𝑓(𝑥, 𝑡)   (𝑥, 𝑦) 𝜖 𝐷  

where 𝑤(𝑥, 𝑡)is unknown function  and the functions   𝑓(𝑥, 𝑡) and 𝐾(𝑥, 𝑡, 𝑦, 𝑧, 𝑤)   known  

continuous about a D domain and E domain respectively with  𝐷 = {(𝑥, 𝑡); 𝑥 > 0 , 𝑡 > 0} and  

𝐸 = {(𝑥, 𝑡, 𝑦, 𝑧); 0 ≤ 𝑦 ≤ 𝑥, 0 ≤ 𝑧 ≤ 𝑡 , 𝑥 > 0 , 𝑡 > 0, −∞ < 𝑤 < ∞} we will do it in two 

steps. 
 

We differentiate with respect to t twice and consider the equation in partial derivatives of second 

order 
𝑤𝑥𝑥(𝑥, 𝑡) − 𝑤𝑡𝑡(𝑥, 𝑡)  = −𝐻(𝑥, 𝑡)   

with  𝐻(𝑥, 𝑡) unknown. 

1. In a first step we approximate 𝐻(𝑥, 𝑡)  with  𝑝1𝑛(𝑥) solving the integral equation 

∫ 𝐻(𝑥, 𝑡)𝑅𝑚(𝑥, 𝑡)𝑑𝑥
∞

𝑎1

= 𝜙(𝑚) = 𝜇𝑚 
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which we interpret as a generalized moments problem and   𝑅𝑚(𝑥, 𝑡) = 𝑢(𝑚, 𝑚, 𝑥, 𝑡) =
𝑒−𝑚𝑥  𝑒−𝑚𝑡  𝑚 = 0,1,2, … 𝑛   where n   is conveniently chosen. 

2. To find an approximation of 𝑤(𝑥, 𝑡)   we consider: 

 
 

∬ 𝑤(𝑥, 𝑡)𝐻𝑚𝑟(𝑥, 𝑡)𝑑𝐴
𝐷

=
−𝐺(𝑚, 𝑟) + 𝐴(𝑚, 𝑟) + ∬ 𝑢

𝐷
𝑝1𝑛(𝑥)𝑑𝐴

((𝑚 + 1)2 − (𝑟 + 1)2)
= 𝜙(𝑚, 𝑟) = 𝜇𝑚𝑟  

 

where    𝐻𝑚,𝑟(𝑥) = 𝑢(𝑚, 𝑟, 𝑥, 𝑡). We can consider it as a two-dimensional generalized moment problem 

if we discretize giving m and r non-negative integer values  𝑚 𝑎𝑛𝑑  𝑟.  An approximation 𝑝2𝑛(𝑥, 𝑡) is 

found by the truncated expansion method for 𝑤(𝑥, 𝑡) where 𝑛 = 𝑛1 × 𝑛2. 
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