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Abstract

A single numerical model as integrator of initial value problems of multi-order (1st, 2nd and 3rd) ordinary
differential equations is introduced. Utilizing Chebyshev polynomials as the trial function, the method is
formulated firstly, by obtaining the continuous form of the proposed scheme via collocation technique
and later, arrange in a block-by-block manner as numerical integrator of multi-order ODEs. The
convergence properties are investigated and it’s established that the proposed method is convergent. A
comparison of the problems solved with the new method and existing methods shows that the new
method outperformed better than existing methods in terms of accuracy.
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INTRODUCTION

This paper focuses on the development of

{iar ©Y,.. =h(iﬂr ®m, ] " h{i 4O, j " h?’(i s, (t)kw] @
r=0 r=0 r=0 r=0
to directly integrate ordinary differential equations (ODES)

y ()= f(x, y(x), y(X5) = ¥,
y () =06y, ¥ (X)), Y(X) = Yo, Y (X) =Y, )
y ()= Y0,y (X, Y (), Y(X0) = You Y (%) = Yo, ¥ (X0) = Yo
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where in (1), either of ,(t)and S, (t) do not varnish, o (t) =1, S,(t)#0and s=1

Integrating (2) using block method and the resulting solutions have been extensively discussed.
This block method approach which generates approximations at different grid points
simultaneously without overlapping of sub-intervals has been reported to circumvent the setback
commonly experienced in reducing higher-order ODEs to a first-order equations and the
predictor-corrector approach. ( Kayode S. & Adegboro, J. [11]).

Numerical scheme capable of handling second and third-order ODEs has been formulated by [4]
using power series as the basis function while (Adeyefa E. & Kuboye J. [4]) computed a
numerical integrator able to handle first, second, and third-order ODEs.

Conventionally, these methods which have been reported to be efficient are directly used as
numerical integrators of ODE targeting IVPs of the same order but, to using the method to
integrate initial value problems of different order has not been discussed. Thus, the focus is to
foster a single numerical model for the direct numerical solution of multi-order (1st, 2nd and 3rd)
ODEs.

We consider the derivation of the proposed method for direct integration of (Kayode S. &
Adegboro, J. [11]) in section 2. In Section 3 the analysis of the method and its implementation
are discussed and results is given in Section 4. Finally, in section 5 the conclusion of the paper is
discussed.

METHOD OF SOLUTION

Interpolation and collocation technique is adopted and a new numerical scheme capable of
solving multi-order (1st, 2nd and 3rd) IVPs of ODEs is formulated, employing Chebyshev
polynomials as basis function.

Thus,
=3, X, ©
is an approximate solution to first, second and third-order ODEs of the form

y'() =1 y(x), y(%) = Yo (4)
y' ()= £, y00, Y’ (X)), Y(X6) = Yo, ¥Y' (%) =Yg (5)
y"(x) = T4y, Y (), Y"(¥), Y(Xo) = Yo, ¥'(X0) = Y5, ¥ (Xo) = Y (6)
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Eqg. (3) is interpolated at X = X, The first and second derivatives of Eq. (3) is collocated at

345

X=X, p= O,E,E,gand the third derivative at X = X,,,,W=1, we have

n+p?

s+9
Z_;,O[r X r = yn
S+9

Zoar x r = mn+V

S+9
20 X =l
r=0

S+9

zoar X r = er—W

(7)

where; X is the parameters of Chebyshev polynomials, m,,, is the first derivative of (3), 1., is
its second derivative, K,.,, is its third derivative and s is the step number (s=1).

Introducing Gaussian elimination in Eq.(7) to get the «'s which are the unknown variables
which are substituted back to Eq. (3). This yields a continuous implicit scheme of the form:

+ Hs (t)IMSJJr
6

6

a, 1)y, = h[Zﬁg Om +B,Om ,+p0Om ] + hz(Zﬂs GlN
=0 e 6 6 6 6

6 i=0 6

3+;U4(t)| 4
5 5 "6

h3(§1 (t)kn+l) (8)

where, t = &h"n_h a,(t)=1.
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Eq. (8) is evaluated at X=X ,(t=1) x=x 5(t:§),x=x 4(t=%)and X=X 4(t=0). This

6 6 6
produces the following schemes

A mn I n kn
y 1 m I k
1 2 3
Y s |= 1yn+hRth +h°U ui +h°V hi (9)
yn+l l m 5 I 5 k 5
n*g n+g n+g
m I k

5631139 381829 312815 176609

38080000 2581875 2115072 1190000
—-44515  -166912 -10665625 —648

7616 28917 1850688 119
whereR =| 25515 3233 1703125 6399

8704 1071 548352 1904
15544467 730112 229115 218376

4760000 223125 68544 74375
0 0 0 0
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Analysis of the method

The analysis of basic properties of this method is investigated in this section such as consistency,
error constant, order, and zero stability.

Order

Equation (9) is regarded as a scheme which belongs to the class of LMMs of the form:

Za, Yoo = h(z S.Om, ., ] + hz(z u, @1, j + h3(z 0, (t)kwj (10)
r=0 r=0 r=0 r=0
Following (Fatunla S. [8]), we define the local truncation error associated with Eq. (10) as
k
L[y(x):h]= Z[ozry(xn +rh)—h*B m(x, +rh)—h® V. I(x, + rh)] (12)
r=0

Where L is the difference operator and y(X) is continuously differentiable on the given interval.

Expanding (11) using Taylor series about the point X, the expression below is obtained

LLY00:h] = Coy(0 +Cihy () + "y (9 ...+ Cy ™2y P2 ()
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. S S 1 S
where the C,, C,,C,...C,...C,,, are obtained as C, =) a,,C, =) ra, CZ=EZr2ar,
= r=l

. p+2
r=0 r=1

C, =${ir‘*ar —q@-D> Ar —qq-1)( —2)iyrr‘*‘3}

In the spirit of (Lambert J. [14]), Eq. (11) is of order p if C, =C, =C,=...C, =C_,, =0and
C,.r #0. The C,,, #0 is called the error constant andC,, h**y"**(x ) is the principal local

truncation error at the point X, .

Thus, the order of the block (9) is p =8 and error constant

~ 4553 3649 398875 337 !
P2 | 2378316851200 ' 19124223249600 ' 2088875158142976 ' 1678944153600

Zero Stability of the Method

The LMMs (10) is said to be zero-stable if no root of the first characteristic polynomial p(R) has

modulus greater than one and if every root of modulus one has multiplicity not greater than the
order of the differential equation.

In analyzing the zero-stability of the method, equation (10) is presented in vector notation form
of column vector e=(g;...e,)", d=(dy...d, ], Yo=Y Vor,J s M(yn)=(mps..m, ],
Ly )=l T K (V)= (Kysr .k, ) and matrices A= (a;) , B=(b,).

Thus, Eq. (9) forms the block formula

A%y =hRV (y,)+ Ay, +hrv, + h2UL(y, ) +h?Ul, +h*MW (y, )+ h%uK, (12)

where h is a fixed mesh size within a block.

In accordance with (12),
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Equation (13) is the first characteristic polynomial of the block hybrid method

Where

o O +— O
o r O O

O O O

cand  Al=

o O O o

o O O O

O O O O

1
1
10
1

~
‘\,o oo o

228480

(13)

substituting A° and A" in equation (13) and solving for R , the values of R are obtained as 0
,0,0and1.

In the Spirit of (Lambert J. [14]), equation (9) is zero-stable, since from [10], po(R) = 0, satisfy
IRj| <1, j =1 and for those roots with |R;| =1, the multiplicity does not exceed two.
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Consistency and convergence of the method

If linear multistep method (10) has order p >1, it is said to be consistent. Hence the method is
consistent being of order p=8

The sufficient and necessary condition for a LMMs to be convergent is to be zero stable and
consistent, see (Dahlquist G. [7]). Hence, the method is convergent.

NUMERICAL RESULTS AND DISCUSSION:

Differential problems which include first, second and third-order ordinary differential equations
are implemented to test the effectiveness of the new scheme formulated in this section.

Problem1: y'=0.5(1-vy), y(0)=05h=0.1

Exact Solution: y(x) =1—0.5e

Table 1: Comparing the error of the new block method with existing methods for solving
Problem 1

X- Error in Error in [4] Error in [5] Error in [21]
values new method,

0.1 0.000000E+000 1.000000E-10 1.218026E-13  5.574430E-12
0.2 1.000000E-20 1.000000E-10 1.399991E-13 3.946177E-12
0.3 0.000000E+000 1.000000E-10 1.184941E-12 8.183232E-12
0.4 0.000000E+000 2.000000E-10 1.538991E-12 3.436118E-15
0.5 1.0000000E-20 3.000000E-10 1.110001E-12 1.929743E-10
0.6 0.000000E+000 3.000000E-10 5.270229E-12  1.879040E-10
0.7 0.000000E+000 2.000000E-10 2.10898E-12 1.776835E-10
0.8 0.000000E+000 3.000000E-10 1.297895E-11 1.724676E-10
0.9 0.000000E+000 3.000000E-10 3.08229E-11 1.847545E-10
1.0 0.000000E+000 2.000000E-10 4.121925E-11 3.005770E-10
Problem2: y"=3sinx, y(0)=1y'(0)=0,y"(0)=-2,h=0.1

Exact Solution: y(x) = 3cosx + X? -2
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Table 2: Error comparison of the new block method with existing methods for solving Problem

Error in the new Error in [4]

Error in [12]

Error in [17]

2.000000E-010

4.000000E-010

2.000000E-010

2.000000E-010

9.000000E-010

1.100000E-009

1.500000E-009

1.300000E-009

1.500000E-009

2.000000E-009

6.370460E-13

4.052980E-12

1.009326E-11

1.890366E-11

3.033807E-11

4.455258E-11

5.987466E-11

7.711903E-11

9.618412E-11

1.171654E-10

1.65922E-10

4.76275E-10

6.23182E-10

19.9134E-10

3.28882E-10

1.27096E-09

4.84653E-09

1.09585E-08

2.0188E-08

3.53956E-08

2
X-
values method
0.1 7.000000E-020
0.2 1.400000E-019
0.3 1.400000E-019
0.4 2.300000E-019
0.5 3.300000E-019
0.6 3.300000E-019
0.7 4.100000E-019
0.8 4.600000E-019
0.9 4.100000E-019
1.0 5.000000E-019
Problem3 :

Exact Solution: y(x) =1—¢”*

y"=y, y(0)=0,y'(0)=-1, h=0.1

Table 3: Comparing the error of the new block method with existing methods for solving

Problem 3

X- Error in the new Errorin [3] Error in [12] Errorin [12]
values method

0.1 4.200000E-020 2.095826E-010 2.508826E-13  2.858824E-15
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2.092718E-009
7.842546E-009
2.009500E-008
4.199771E-008
7.728842E-008
1.303844E-007
2.064839E-007
3.116817E-007
4.531001E-007

6.493175E-11
1.683146E-09
1.700635E-08
1.025454E-07
2.558711E-06
5.273300E-06
8.275935E-06
1.161667E-05
1.542187E-05

1.439682E-12
5.591383E-11
4.796602E-09
1.003781E-08
1.590163E-08
2.870014E-08
4.284730E-08
5.857869E-08
8.449297E-08

0.2 -4.200000E-020
0.3 -1.200000E-020
0.4 -4.300000E-020
0.5 -2.000000E-020
0.6 2.500000E-020
0.7 -4.700000E-020
0.8 3.600000E-020
0.9 -2.700000E-020
1.0 1.000000E-020
Problem 4:

Exact Solution: y(x) = 2+ 2x° +¢*

Table 4: Comparing the error of the new block method with existing methods for solving

y"=¢e* y(0)=3,y'(0)=1y"(0)=5h=0.1

Problem 4

X- Error in the new Error in [3] Errorin[12]  Errorin[17]
values method

0.1 0.000000E+000  8.881784E-015 3.369305E-12 9.24352E-10
0.2 0.000000E+000  3.552714E-014 2.160050E-11 8.3983E-10
0.3 0.000000E+000  8.304468E-014 5.333245E-11 4.23997E-10
0.4 -1.000000E-019  1.527667E-013 9.988632E-11 3.58729E-10
0.5 -2.000000E-019  2.460254E-013 1.598988E-10 2.99872E-10
0.6 -2.000000E-019  3.668177E-013 2.511404E-10 3.90509E-10
0.7 -3.000000E-019  5.178080E-013 3.961489E-10 1.47048E-09
0.8 -3.000000E-019  7.025491E-013 5.926823E-10 2.49247E-09
0.9 -4.000000E-019  9.254819E-013 8.429168E-10 0.15695E-09
1.0 -4.000000E-019 1.187495E-012 1.144603E-09  3.54096E-09
Problem5 : y"=vy', y(0)=0,y'(0)=-1,h=0.1
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. 1 (2+x
Exact Solution: Y(X) =1+ =In| ——
2 \2-X

Table 5: Comparing the error of the new block method with existing methods for solving Problem 5

X- Error in the new Errorin [19] Errorin [12]
values method,

0.1 0.00000E+000 1.194048000E-013 2.508826E-13
0.2 0.00000E+000 4.086842000E-013 6.493175E-11
0.3 1.00000E-019 1.016689500E-012 1.683146E-09
0.4 0.00000E+000 2.139483600E-012 1.700635E-08
0.5 0.00000E+000 4.083580200E-012 1.025454E-07
0.6 0.00000E+000 7.350069300E-012 2.558711E-06
0.7 -1.00000E-019 1.279204250E-012 5.273300E-06
CONCLUSION

In this paper, a single numerical model developed has been used in solving multi-order ordinary
differential equations directly. The method is consistent because is of order 8. The advantage of
the new method over existing methods is that it is efficient in handling different orders of
differential equations namely first, second and third-order ordinary differential equations. The
efficiency of the new method is proved by applying it to first, second and third-order ordinary
differential equations, from the results generated, the new method outperformed the existing
methods in terms of error as shown in Tables | — V
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