
 

CHEBYSHEV-BASED NUMERICAL MODEL AS FIRST, SECOND AND 

THIRD ORDER INITIAL VALUE PROBLEMS SOLVER 

 

1Kazeem Oladapo &2Adeyefa Emmanuel 

 

1Graduate Teaching Assistant 

Department of Mathematics 

Federal University Oye-Ekiti, Ekiti State, NIGERIA 

Email: dapkaz40@yahoo.com 

 

2Department of Mathematics 

Federal University Oye-Ekiti, Ekiti State, NIGERIA 

Email: adeoluman@yahoo.com 

Abstract  

A single numerical model as integrator of initial value problems of multi-order (1st, 2nd and 3rd) ordinary 

differential equations is introduced. Utilizing Chebyshev polynomials as the trial function, the method is 

formulated firstly, by obtaining the continuous form of the proposed scheme via collocation technique 

and later, arrange in a block-by-block manner as numerical integrator of multi-order ODEs. The 

convergence properties are investigated and it’s established that the proposed method is convergent. A 

comparison of the problems solved with the new method and existing methods shows that the new 

method outperformed better than existing methods in terms of accuracy.  
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INTRODUCTION 

This paper focuses on the development of 
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to directly integrate ordinary differential equations (ODEs) 















''

00

'''

00

'

00

''''''

'

00

'

00

'''

00

'

)(,)(,)()),(),(),(,()(

)(,)()),(),(,()(

)()),(,()(

yxyyxyyxyxyxyxyxfxy

yxyyxyxyxyxfxy

yxyxyxfxy

                                         

(2) 

ISSN 2688-8300 (Print) ISSN 2644-3368 (Online)

JMSCM, Vol.4, No.2, January, 2023 (Special issue) 

139 Journal of Mathematical Sciences & Computational Mathematics



where in (1), either of )(0 t and )(0 t do not varnish, 1)( ts , 0)( ts and 1s  

 

Integrating (2) using block method and the resulting solutions have been extensively discussed. 

This block method approach which generates approximations at different grid points 

simultaneously without overlapping of sub-intervals has been reported to circumvent the setback 

commonly experienced in reducing higher-order ODEs to a first-order equations and the 

predictor-corrector approach. ( Kayode  S. & Adegboro, J.  [11]). 

 

Numerical scheme capable of handling second and third-order ODEs has been formulated by [4] 

using power series as the basis function while (Adeyefa E. & Kuboye J. [4])  computed a 

numerical integrator able to handle first, second, and third-order ODEs. 

 

Conventionally, these methods which have been reported to be efficient are directly used as 

numerical integrators of ODE targeting IVPs of the same order but, to using the method to 

integrate initial value problems of different order has not been discussed. Thus, the focus is to 

foster a single numerical model for the direct numerical solution of multi-order (1st, 2nd and 3rd) 

ODEs.   

 

We consider the derivation of the proposed method for direct integration of (Kayode  S. & 

Adegboro, J.  [11]) in section 2. In Section 3 the analysis of the method and its implementation 

are discussed and results is given in Section 4. Finally, in section 5 the conclusion of the paper is 

discussed.  
 

METHOD OF SOLUTION 

Interpolation and collocation technique is adopted and a new numerical scheme capable of 

solving multi-order (1st, 2nd and 3rd) IVPs of ODEs is formulated, employing Chebyshev 

polynomials as basis function. 

Thus, 

X r

s

r
r

xy 





9

0

)(                                                                                                                           (3) 

is an approximate solution to first, second and third-order ODEs of the form 
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Eq. (3) is interpolated at n
xx   The first and second derivatives of Eq. (3) is collocated at 
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where; Xr is the parameters of  Chebyshev polynomials, vnm   is the first derivative of (3), vnl  is 

its second derivative, wnk   
is its third derivative and s is the step number (s=1). 

Introducing Gaussian elimination in Eq.(7) to get the s'  which are the unknown variables 

which are substituted back to Eq. (3). This yields a continuous implicit scheme of the form:      
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produces the following schemes 
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Analysis of the method 

The analysis of basic properties of this method is investigated in this section such as consistency, 

error constant, order, and zero stability.  

 

Order 

Equation (9) is regarded as a scheme which belongs to the class of LMMs of the form: 
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Following (Fatunla S. [8]), we define the local truncation error associated with Eq. (10) as 
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Where L is the difference operator and )(xy  is continuously differentiable on the given interval. 

Expanding (11) using Taylor series about the point x , the expression below is obtained 
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In the spirit of (Lambert J. [14]), Eq. (11) is of order  p  if 01210  pp CCCCC  and 

0rpC . The 0rpC  is called the error constant and )(22

n

pp

rp xyhC 

  is the principal local 

truncation error at the point nx . 

Thus, the order of the block (9) is 8p  and error constant 
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Zero Stability of the Method 

The LMMs (10) is said to be zero-stable if no root of the first characteristic polynomial )(R has 

modulus greater than one and if every root of modulus one has multiplicity not greater than the 

order of the differential equation. 

In analyzing the zero-stability of the method, equation (10) is presented in vector notation form 

of column vector  Treee 1 ,   Tjddd 1 ,   Tjnnm yyy  1
,    Tjnnm mmyM  1

 ,

   Tjnnm llyL  1
,    Tjnnm kkyK  1  

and matrices  )( ijaA   ,  )( ijbB  . 

Thus, Eq. (9) forms the block formula 

  nmnmnnmm uKhyMWhUlhyULhhrvyAyhRVyA 332210 )()( 
                   (12)

 

where  h  is a fixed mesh size within a block. 

In accordance with (12), 
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Equation (13) is the first characteristic polynomial of the block hybrid method 

Where 
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substituting
0A  and  

1A  in equation  (13) and solving for R , the values of R  are obtained as 0

,0,0 and1. 

In the Spirit of (Lambert J. [14]), equation (9)  is zero-stable, since from [10], 0)( R , satisfy  

1jR , 1j  and for those roots with 1jR , the multiplicity does not exceed two. 
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Consistency and convergence of the method 

If linear multistep method (10) has order 1p , it is said to be consistent. Hence the method is 

consistent being of order p=8 

The sufficient and necessary condition for a LMMs to be convergent is to be zero stable and 

consistent, see (Dahlquist G. [7]). Hence, the method is convergent. 

 

NUMERICAL RESULTS AND DISCUSSION: 

Differential problems which include first, second and third-order ordinary differential equations 

are implemented to test the effectiveness of the new scheme formulated in this section. 

Problem 1: 1.0,5.0)0(),1(5.0'  hyyy  

Exact Solution: xexy 5.05.01)(   

Table 1: Comparing the error of the new block method with existing methods for solving 

Problem 1 

x- 

values 

Error in 

new method, 

Error in [4] Error in [5] Error in [21] 

0.1 0.000000E+000 1.000000E-10 1.218026E-13 5.574430E-12 

0.2 1.000000E-20 1.000000E-10 1.399991E-13 3.946177E-12 

0.3 0.000000E+000 1.000000E-10 1.184941E-12 8.183232E-12 

0.4 0.000000E+000 2.000000E-10 1.538991E-12 3.436118E-15 

0.5 1.0000000E-20 3.000000E-10 1.110001E-12 1.929743E-10 

0.6 0.000000E+000 3.000000E-10 5.270229E-12 1.879040E-10 

0.7 0.000000E+000 2.000000E-10 2.10898E-12 1.776835E-10 

0.8 0.000000E+000 3.000000E-10 1.297895E-11 1.724676E-10 

0.9 0.000000E+000 3.000000E-10 3.08229E-11 1.847545E-10 

1.0 0.000000E+000 2.000000E-10 4.121925E-11 3.005770E-10 

 

Problem 2: 1.0,2)0(,0)0(,1)0(,sin3  hyyyxy  

Exact Solution: 2
2

cos3)(
2


x

xxy  
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Table 2: Error comparison of the new block method with existing methods for solving Problem 

2 

x- 

values 

Error in the new 

method 

Error in [4] 

 
Error in [12] 

Error in [17] 

0.1 7.000000E-020 2.000000E-010 
6.370460E-13 1.65922E-10 

0.2 1.400000E-019 4.000000E-010 
4.052980E-12 4.76275E-10 

0.3 1.400000E-019 2.000000E-010 
1.009326E-11 6.23182E-10 

0.4 2.300000E-019 2.000000E-010 
1.890366E-11 19.9134E-10 

0.5 3.300000E-019 9.000000E-010 
3.033807E-11 3.28882E-10 

0.6 3.300000E-019 1.100000E-009 
4.455258E-11 1.27096E-09 

0.7 4.100000E-019 1.500000E-009 
5.987466E-11 4.84653E-09 

0.8 4.600000E-019 1.300000E-009 
7.711903E-11 1.09585E-08 

0.9 4.100000E-019 1.500000E-009 
9.618412E-11 2.0188E-08 

1.0 5.000000E-019 2.000000E-009 
1.171654E-10 3.53956E-08 

 

Problem3 : 1.0,1)0(,0)0(,  hyyyy  

Exact Solution: xexy 1)(  

Table 3: Comparing the error of the new block method with existing methods for solving 

Problem 3 

x- 

values 

Error in the new 

method 

Error in [3] Error in [12] Error in [12] 

 

0.1 4.200000E-020 2.095826E-010 2.508826E-13 2.858824E-15 
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0.2 -4.200000E-020 2.092718E-009 6.493175E-11 1.439682E-12 

0.3 -1.200000E-020 7.842546E-009 1.683146E-09 5.591383E-11 

0.4 -4.300000E-020 2.009500E-008 1.700635E-08 4.796602E-09 

0.5 -2.000000E-020 4.199771E-008 1.025454E-07 1.003781E-08 

0.6 2.500000E-020 7.728842E-008 2.558711E-06 1.590163E-08 

0.7 -4.700000E-020 1.303844E-007 5.273300E-06 2.870014E-08 

0.8 3.600000E-020 2.064839E-007 8.275935E-06 4.284730E-08 

0.9 -2.700000E-020 3.116817E-007 1.161667E-05 5.857869E-08 

1.0 1.000000E-020 4.531001E-007 1.542187E-05 8.449297E-08 

 

Problem 4: 1.0,5)0(,1)0(,3)0(  hyyyey x  

Exact Solution: 
xexxy  222)(  

Table 4: Comparing the error of the new block method with existing methods for solving 

Problem 4 

x- 

values 

Error in the new 

method 

Error in [3] Error in [12] 

 

Error in [17] 

0.1 0.000000E+000 8.881784E-015 3.369305E-12 9.24352E-10 

0.2 0.000000E+000 3.552714E-014 2.160050E-11 8.3983E-10 

0.3 0.000000E+000 8.304468E-014 5.333245E-11 4.23997E-10 

0.4 -1.000000E-019 1.527667E-013 9.988632E-11 3.58729E-10 

0.5 -2.000000E-019 2.460254E-013 1.598988E-10 2.99872E-10 

0.6 -2.000000E-019 3.668177E-013 2.511404E-10 3.90509E-10 

0.7 -3.000000E-019 5.178080E-013 3.961489E-10 1.47048E-09 

0.8 -3.000000E-019 7.025491E-013 5.926823E-10 2.49247E-09 

0.9 -4.000000E-019 9.254819E-013 8.429168E-10 0.15695E-09 

1.0 -4.000000E-019 1.187495E-012 1.144603E-09 3.54096E-09 

 

Problem 5 : 1.0,1)0(,0)0(,  hyyyy  
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Exact Solution: 













x

x
Inxy

2

2

2

1
1)(  

Table 5: Comparing the error of the new block method with existing methods for solving Problem 5 

x- 

values 

Error in the new 

method, 

Error in [19] Error in [12] 

0.1 0.00000E+000 1.194048000E-013 2.508826E-13 

0.2 0.00000E+000 4.086842000E-013 6.493175E-11 

0.3 1.00000E-019 1.016689500E-012 1.683146E-09 

0.4 0.00000E+000 2.139483600E-012 1.700635E-08 

0.5 0.00000E+000 4.083580200E-012 1.025454E-07 

0.6 0.00000E+000 7.350069300E-012 2.558711E-06 

0.7 -1.00000E-019 1.279204250E-012 5.273300E-06 

 

CONCLUSION 

In this paper, a single numerical model developed has been used in solving multi-order ordinary 

differential equations directly. The method is consistent because is of order 8.The advantage of 

the new method over existing methods is that it is efficient in  handling different orders of 

differential equations namely first, second and third-order ordinary differential equations. The 

efficiency of the new method is proved by  applying it  to first, second and third-order ordinary 

differential equations, from the results generated, the new method outperformed the existing 

methods in terms of error as shown in Tables I – V 
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