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Abstract                                                                                                                    

Fluid Mechanics riches with the different applications of Dynamical systems, having applications towards 

the flow patterns and flow characters. A wide variety of modelling and structural dynamics have been 

studied in the vicinity of research on stenosis or cardio-vascular disorders. Mainly the in-growth of tissues 

in the inner arterial wall causes for different fatal diseases like coronary thrombosis, Atherosclerosis. Here 

the flow characters are modelled with respect to the various phenomena in view of mathematical analysis. 

The axisymmetric flow patterns are considered with wide outline to estimate the flow patterns in the 

effected arteries on the basis of irregularity of plaque formation. The formation of three-dimensional mild 

casting is analyzed so that the problem becomes realistic in physiological approach. Here the theoretical 

investigation of fluid dynamical systems is based on Casson fluid model and Herschel Bulkley fluid Model 

in a comparative way. 

Keywords: Blood flow, Velocity, Overlapping Stenosis, Herschel Bulkley fluid Model, Casson fluid 

model.                                                                                                                                                                                                          

INTRODUCTION 

Circulatory abnormalities continue to be a prominent cause of death among all human deadly 

diseases like cardio vascular disease. Many arterial illnesses include mechanical behaviour of the 

inner wall of the artery and blood flow characteristics, as its root causes and growth. Stenosis is 

the medical word for the abnormal and unnatural increase in the artery wall thickness at various 

inner lining of the arterial wall of the cardio-vascular system. Many cardiovascular disorders are 

brought on by geometric distortion in the inner artery wall, which are to responsible for the 

inadequate blood flow from the coronary arteries into the heart. The flow resistance in arteries is 
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increased by high grade stenosis. The body is compelled to elevate blood pressure, and arterial 

constriction together with increased flow velocity, shear stress, and significantly decreased 

pressure at the stenosis neck all contribute to thrombus development. If the condition worsens, it 

could result in serious circulation problems, morbidity, or even death. Several researchers have 

been drawn to investigate current approaches and ever-more complex mathematical models for 

examination on flow through stenotic arteries owing to the important significance that 

haemodynamic parameters play in the development and progression of the illness. The 

sophistication and practical utility of computational techniques for patient-specific blood flow 

modelling have substantially risen over the past few years. Understanding the hemodynamic 

effects of simulations has been crucial for analyzing the status of the patient. (Young, et al.,1986); 

(Chaturani and Samy, 1985) dealt with the problems of blood flow through the arterial segments 

having the stenosis or multiple stenoses (regular or irregular shape) based upon the assumption 

that fluid representing blood is Newtonian and the stenotic geometry to be a smooth cosine 

function. (Srivastava & Saxena, 1994); (Chaturani & Biswas, 1984) considered the blood flow 

through a composite stenosis in catheterized arteries assuming that the flowing blood behaves like 

a Newtonian fluid. The assumption of the Newtonian behaviour of the blood is acceptable for a 

high shear rate flow through larger arteries. 

Many experimental observations reveal that blood, being predominantly a suspension of 

erythrocytes in plasma behaves like a non-Newtonian fluid at low shear rates (Srivastava & 

Saxena, 1994). During its flow through micro vessels especially in diseased states clotting affects 

small arteries. 

Theoretical investigations of non-Newtonian blood flow in constrictive arteries use the Herschel-

Bulkley fluid model and the Casson fluid model. The impacts of an overlapping stenosis of flow 

behaviour of the flowing blood were shown in the mathematical analysis by Nanda and Basu 

Mallik (2012), which was considered as a microscopic two-phase fluid (i.e., suspension of 

erythrocytes in plasma). Blood was treated as H-B fluid in (Sankar and Lee, 2009) analysis of the 

pulsatile blood flow via stenosed narrow arteries with body acceleration. 

(Sarojamma and Nagarani, 2000) investigated the Casson fluid flow in a porous medium-filled 

tube under periodic acceleration In a published paper by (Mandal et al., 2007), where a two-

dimensional mathematical model was developed to investigate the impact of externally imposed 

periodic body acceleration on non-Newtonian blood flow through an elastic stenosed artery. The 

generalized power law model of the blood was used to describe the blood flow. The problem of 

blood flow through a stenosed portion of an artery, where the rheology of blood is characterized 

by the Herschel-Bulkley model and the Casson fluid model, is the focus of the current work. The 

desirability of an artery wall has been calculated using regional fluid mechanics. In order to solve 

the unsteady non-Newtonian blood flow with various boundary conditions in a cylindrical 

coordinate system, an appropriate finite difference technique will be taken into account (Misra & 

Chakravarty, 1986; Ponalagusamy, 2007).  
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The varying values of the material constants and other factors will be taken into consideration for 

a quantitative analysis based on numerical calculations. In relation to the blood flow velocity in 

the arterial segment, the variation of skin friction with axial distance and impedance in the location 

of the stenosis is visually displayed (Bose & Nanda, 2012a; Bose & Nanda, 2012b). It is noted 

that blood only complies with Casson's equation for moderate shear rates, and the Herschel-

Bulkley equation largely captures the behaviour of blood. Blood behaves more like H-B fluid for 

tube diameters of 0.095mm than like power-law and Bingham fluids, according to Chaturani and 

Ponnalagar Samy, (Chaturani & Samy, 1985; Chaturani & Palanisamy, 1990). (Iida, 1978) reports 

“That velocity profile in the arterioles having diameter less than 0.1mm are generally explained 

fairly by the two models. However, velocity profiles in the arterioles whose diameters are less than 

0.065mm does not conform to the Casson model but can still be explained by H-B fluid model”. 

Based on experimental findings, (Whitemore, 1968) hypothesized that blood, which is primarily 

a suspension of erythrocytes in plasma, exhibits remarkable non-Newtonian behaviour when it 

flows through small, low-shear arteries, especially in diseased states where small artery clotting 

effects are present. Blood flow via small arteries is theoretically investigated using the H-B fluid 

model and Casson fluid models. Studies on blood with varied hematocrit, anticoagulants, 

temperature, etc. indicate that the Casson model can better capture the behaviour of blood at low 

shear rates (Cokelet, et al., 1963; Merrill, et al., 1965; Blair, 1959). It is widely known that the 

gradient in the heart's pulse pressure causes the blood to flow through arteries to be extremely 

pulsatile. The suggested inquiry examines the periodic body acceleration-induced pulsatile flow 

of blood while treating it as a Casson fluid. An analysis of blood acceleration with account of 

velocity slip at the stenosed vessel wall was presented by Biswas and Chakraborty in 2009. 

(Biswas & Chakraborty, 2009). A Newtonian fluid has been used to represent blood. (Verma et 

al., 2011) studied the effect of body acceleration on the pulsatile flow of blood through some kind 

of stenosed artery while taking the Casson model for blood under the no slip condition into 

consideration. 

When the Casson fluid model is used to represent the rheology of blood, it opens up the possibility 

of thinking about the issue of blood flow via a stenotic portion of an artery while subjected to body 

acceleration. Moreover, the flow variations can be measured when the study takes slip velocity 

into account. The problem's analytical solution was obtained using the perturbation approach. The 

present investigation takes into account the shape of the stenosis that will appear in the arterial 

segment. By creating computer codes, large-scale numerical simulations of the measured flow 

variables with greater physiological significance are performed as part of an exhaustive 

quantitative analysis. Towards the conclusion of the publication, their graphical depictions are 

shown along with the pertinent scientific analysis. In order to support the usefulness of the current 

model, comparisons are then done utilizing the various existing results. 
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MATHEMATICAL FORMULATION OF THE PROBLEM 

1. Herschel–Bulkley fluid model: 

Blood is assumed to be represented by a non-Newtonian fluid and considering the axisymmetric, 

Laminar, fully developed and steady one-dimensional flow of blood in an artery, the governing 

equation of motion of blood flow, under the conditions may be stated as 

1 ( )dp d r

dz r dr


                                                       (1.1)  

in which τ represents the shear stress of blood considered as Herschel–Bulkley fluid and p the 

pressure at any point. The constitutive equation may be put as 

1
( ) ( ) ;n

H H

du
f

dr k
                                                              (1.2)  

                                 = 0                ; τ≤
H  

  

where u stands for the axial velocity of blood and  H is the yield shear stress and k, n are 

parameters which represent non-Newtonian effects. 

Let us consider a bell-shaped stenosis geometry given by 

2 2 2

0 2

0 0

( ) [1 exp( )]
m z

R z R
R R

 
                                                                                    (1.3) 

     where 0R  stands for the radius of the arterial segment outside the stenosis, R (z) is the radius of 

the stenosed portion of the arterial segment under consideration at a longitudinal distance z from 

the left-end of the segment; δ is the depth of the stenosis at the throat and m is a parametric 

constant;  characterizes the relative length of the constriction, defined as the ratio of the radius 

to half-length of stenosis, i.e.
0

R

L
  . 

 
Figure: 1 (Picture of arterial stenosed segments & stenosis throat) 

 

Considering the stenosis geometry to be of the form (cf. Fig. 1)  

2

0

( )
1 bzR z

ae
R

                                                                 (1.4) 

with 
0

a
R


 and 

22

2

0

m
b

R




equations (1.1) and (1.2) are to be solved subject to the boundary 

conditions 

u=0 at r=R (z)    (no slip condition)                                                                                        (1.5)  
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τ is finite at r = 0 (regularity condition)                                         (1.6)

                                                                        

Integrating Equation (1.1) and using (1.6) we get 

= -  
2

r dp

dz
                                                                                                                                                        (1.7)  

The skin-friction 
2

R

R dp

dz
       where R=R (z)                        (1.8) 

The volumetric flow rate Q is given by the Rabinowitsch equation 

Q=
3

2

3

0

( )
R

R

R
f d




  
                           (1.9) 

where τ and R given by the equations (1.7) and (1.8) respectively. 

Therefore substituting the value of f (τ) from equation (1.2) we get. 

3
2

3

0

1
Q= ( )

R

n

H

R

R
d

k




   


                                          (1.10) 

                                                                 (Where n=fluid index parameter)                                                                                                          

    =
3

1 22 2
(1 ) 1 ( ) ( )

( 3) 2 ( 1)( 2)

n
nR H H H

R R R

R

k n n n n

    

  
  

   
    

                               (1.11) 

When ( H

R




) 1 the above equation reduces to 

Q=
 

3 3

3 2

n

R H

R n

k n n


 
   

  
   

                                                             (1.12)   

Again, assuming that the flowing blood is representing a non- Newtonian fluid 

1dp u
r

dz r r r


  
  

                                                                  

(1.13) 

where u is the flow. velocity  

 The volumetric flow flux Q is thus calculated as 

 

( )

0

2

2

( )

R Z

Q rudr

Q R z u











                    

(1.14) 
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Now from (1.12) and (1.14) we have 

Q=
3 3

( )
( 3) 2

n

R H

R n

k n n


 

 
   

=  
2

( )R z u                        (1.15) 

 u=
3

2

3
( )

2

( 3) ( )

n

R H

n
R

n

k n R z

 
 

 
 


                                                   (1.16) 

Again, resistance to flow λ is defined by 

    

1 2P P

Q





  

Using 
2

R

R dp

dz
  

 

Where R=R (z) in equation  

3 3
( )

( 3) 2 2

n

H

R R dp n
Q

k n dz n




 
                                       (1.17) 

  

1

3

2 ( 3) 2( 3)

( 2)

n n
H

n

dp kQ n n

dz R n R



 

  
   

                  (1.18) 

Therefore from (1.3) we have, substituting the value of    0

0

R

L
     

2 2

2
0

( )

0
0

( )
( ) [1 ( )e ]

m z

LR z
R R

 

 

                 (1.19)

 

2. Casson fluid model: 

Considering a one-dimensional pulsatile flow of blood in an artery in the presence of externally 

imposed periodic body acceleration with mild stenosis. We consider the flow to be axially 

symmetric, laminar, fully developed by considering blood as a Casson fluid. The geometry of the 

flow is shown in fig.1 and is given by: 

 

𝑅̅(𝑧̅) = {
𝑅̅0 −

𝛿̅

2
(1 + 𝑐𝑜𝑠

𝜋𝑧̅

𝑧̅0
) ;     𝑓𝑜𝑟 |𝑧̅| ≤ 𝑧0̅

𝑅̅0;                                      𝑓𝑜𝑟|𝑧̅| > 𝑧0̅

          (2.1)       
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where R (z) is the radius of the obstructed artery, 𝑅0 is the constant radius of the normal artery, 

𝐿0 is the length of the stenosis, L is the length of the artery, d is the location of the stenosis and δ 

is the maximum height of the stenosis. The periodic body acceleration 𝐹(𝑡̅) in the axial direction 

is given by: 

 𝐹(𝑡̅) =  𝑎0 cos(𝜔𝑏𝑡̅ + ∅)                            (2.2)                 

Where 𝑎0 is the amplitude, 𝜔𝑏=2𝜋. 𝑓𝑏 , 𝑓𝑏  is the frequency in Hz, Ø is the lead angle of 𝐹(𝑡̅). The 

frequency of body acceleration 𝑓𝑏  is assumed to be small, so that wave effects can be neglected. 

The pressure gradient at any 𝑧̅ is given by 

−
𝜕𝑝̅

𝜕𝑧̅
= 𝐴0 + 𝐴1 cos(𝜔𝑝𝑡̅)                 (2.3)   

 

Where 𝐴0 the steady component of pressure gradient is, 𝐴1 is the amplitude of the fluctuating 

component 𝜔𝑝=2𝜋. 𝑓𝑝 , 𝑓𝑝is the pulse frequency. The momentum equation governing the flow in 

cylindrical co-ordinate system is given by 

 

𝜌.̅
𝜕𝑢

𝜕𝑡̅
= −

𝜕𝑝̅

𝜕𝑧̅
+

1

𝑟̅
.

𝜕(𝑟̅.𝜏̅𝑟.̅𝑧̅)

𝜕𝑟̅
+ 𝐹(𝑡̅)                        (2.4) 

 
𝜕𝑝̅

𝜕𝑟̅
= 0                             (2.5) 

 

Where 𝑟̅, 𝑧̅ denotes the radial and axial co-ordinates respectively, 𝜌̅ denotes density, 𝑢̅ is the axial 

velocity of blood, 𝑡̅ is time, 𝑝̅ is pressure and 𝜏̅ the shear stress.  

For Casson fluid the relation between shear stress and shear rate is given by 

√𝜏̅ = √𝜏̅𝑦 + √𝜇. (−
𝜕𝑢

𝜕𝑟̅
)  ;        𝑖𝑓 𝜏̅ ≥ 𝜏̅𝑦, 

𝜕𝑢

𝜕𝑟̅
= 0                          (2.6) 

 

Where 𝜏̅ denotes yield stress and µ̅ denotes the viscosity of blood. The boundary conditions are: 

𝑢̅ = 𝑢̅𝑠  at   𝑟̅ = 𝑅̅(𝑧̅)                          (2.7) 

And   𝜏̅  is finite at   𝑟̅ = 0              (2.8)

  

Where 𝑢̅𝑠 is the slip velocity at the stenotic wall. 

Introducing the non-dimensional variables:𝑢 =
𝑢

𝐴0𝑅0
2

4𝜇
⁄

;    𝑧 =
𝑧̅

𝑅0
;    𝑧0 =

𝑧̅𝑜

𝑅0
;    𝑡 = 𝜔𝑝𝑡̅;    𝛿 =

𝛿̅

𝑅0
;  𝜏 =

𝜏̅
𝐴0𝑅0

2⁄
;    𝜃 =

𝜏̅𝑦

𝐴0𝑅0
2⁄

 ;    
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𝑅(𝑧) =
𝑅̅(𝑧̅)

𝑅0
;    𝑟 =

𝑟̅

𝑅0
;    𝑒 =

𝐴1

𝐴0
;   𝐵 =

𝑎0

𝐴0
;    𝜔 =

𝜔𝑏

𝜔𝑝
;    𝑢𝑠 =

𝑢𝑠

𝐴0𝑅0
2

4𝜇
⁄

                         (2.9)                                                   

The non-dimensional equation (4) becomes: 

𝛼2.
𝜕𝑢

𝜕𝑡
= 4(1 + 𝑒 cos(𝑡)) + 4𝐵 cos(𝜔𝑡 + ∅) +

2

𝑟

𝜕

𝜕𝑟
(𝑟𝜏𝑟𝑧)                  (2.10)        

Where𝛼2 =
𝜔𝑝𝑅0

2

𝜇
𝜌⁄

, 𝛼 is called Womersley frequency parameter. 

Equation (2.6) changes to: 

√𝜏 = √𝜃 +
1

√2
√−

𝜕𝑢

𝜕𝑟
;        𝑖𝑓𝜏 ≥ 𝜃, 𝑎𝑛𝑑 

𝜕𝑢

𝜕𝑟
= 0;       𝑖𝑓       𝜏 ≤ 𝜃                                   (2.11)                                                                            

The boundary conditions (equations (2.7), (2.8)) reduce to 

u = us    at    r = R(z)                     (2.12) 

And τ   is   finite   at   r = 0                                                                                                  (2.13)    

                      

The geometry of the stenosis in the non-dimensional form is given by: 

𝑅(𝑧) = {
1 −

𝛿

2
(1 + 𝑐𝑜𝑠

𝜋𝑧

𝑧0
) ;     𝑓𝑜𝑟 |𝑧| ≤ 𝑧0

1;                                      𝑓𝑜𝑟|𝑧| > 𝑧0

                                                                          (2.14) 

On using perturbation method, the velocity 𝑢, and shear stress, 𝜏 are expressed in terms of 

Womersley parameter, 𝛼2 (where 𝛼 ≪ 1) 

𝑢(𝑧, 𝑟, 𝑡) = 𝑢0(𝑧, 𝑟, 𝑡) + 𝛼2𝑢1(𝑧, 𝑟, 𝑡)+..  . .  ..                                                                   (2.15)  

                                                                 

𝜏(𝑧, 𝑟, 𝑡) = 𝜏0(𝑧, 𝑟, 𝑡) + 𝛼2𝜏1(𝑧, 𝑟, 𝑡)+..  . .  ..                                                                 (2.16)

                                                            

Substituting (2.15) and (2.16) in equation (2.10) and equating the constant terms and 𝛼2, we get: 

𝜕

𝜕𝑟
(𝑟𝜏0) = −2𝑟[(1 + 𝑒 cos 𝑡) + 𝐵 cos(𝜔𝑡 + ∅)]                  (2.17)                              

                            

 
𝜕𝑢0

𝜕𝑡
=

2

𝑟
.

𝜕

𝜕𝑟
(𝑟𝜏1)                                                                                                                     (2.18) 

                                                                                                                      

Integrating equation (2.17) and using boundary condition (13), we get: 𝜏0 = −𝑓(𝑡). 𝑟        (2.19) 

 

where,𝑓(𝑡) = [(1 + 𝑒 cos 𝑡) + 𝐵 cos(𝜔𝑡 + ∅)]                                                               (2.20)   
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Substituting 𝑢 from equation (2.15) into condition (2.12), we get 

𝑢0 = 𝑢𝑠, 𝑢1 = 0  𝑎𝑡 𝑟 = 𝑅(𝑧)                                                            (2.21)                                 

Substituting (15) and (16) in (11), we get 

−
𝜕𝑢0

𝜕𝑟
= 2[𝜃 + |𝜏| − 2. √𝜃𝜏0]                                                                                         (2.22)                                                 

 

−
𝜕𝑢1

𝜕𝑟
= 2|𝜏1|. [1 − √𝜃

𝜏0
⁄ ]                        (2.23)                        

Integrating equation (2.22), and using the relation (2.19) and the boundary condition (2.21), we 

obtain 

𝑢0 = 𝑓(𝑡)𝑅2 [1 − (
𝑟

𝑅
)

2

−
8

3

𝑘

√𝑅
{1 − (

𝑟

𝑅
)

3
2⁄

}
2.𝑘2

𝑅
{1 − (

𝑟

𝑅
)}] + 𝑢𝑠                (2.24)                         

Where 𝑘2 =  𝜃
𝑓(𝑡)⁄ . 

Similarly, the solutions for 𝜏1 and 𝑢1 can be obtained using equations (2.18), (2.23), and (2.24) 

as: 

 

𝜏1 =
𝑓′(𝑡).𝑅3

8
[22 (

𝑟

𝑅
) − (

𝑟

𝑅
)

3

−
8

21

𝑘

√𝑅
{7 (

𝑟

𝑅
) − 4 (

𝑟

𝑅
)

5
2⁄

}]                         (2.25)

           

𝑢1 =
𝑓′(𝑡)𝑅4

16
[(

𝑟

𝑅
)

4

+ 4 (
𝑟

𝑅
)

2

+ 3 +
𝑘

√𝑅
{

16

3
(

𝑟

𝑅
)

2

−
424

147
(

𝑟

𝑅
)

7
2⁄

+
16

3
(

𝑟

𝑅
)

3
2⁄

−
1144

147
} +

𝑘2

𝑅
{

128

63
(

𝑟

𝑅
)

3

−
 64

9
(

𝑟

𝑅
)

3
2⁄

+
320

63
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Using equations (2.15) and (2.16), the total velocity distribution can be written as 

𝑢 = 𝑓(𝑡). 𝑅2 [1 − (
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                        (2.27)  

     

The volumetric flow rate flow rate𝑄 is given by: 
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𝑄(𝑧, 𝑡) = 4 ∫ 𝑟. 𝑢(𝑧, 𝑟, 𝑡)𝑑𝑟
𝑅(𝑧)

0

 

Where  𝑄(𝑧, 𝑡) =
𝑄̅(𝑧̅,𝑡̅)

𝜋𝑅̅0𝐴0
8𝜇̅⁄

 

= 𝑓(𝑡)𝑅4 [
1

4
+

4
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+

1
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(

𝑘
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)

2

+
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16
{

2

3
+
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𝑘

√𝑅
+
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35
(

𝑘

√𝑅
)

2

}] + 2𝑢𝑠𝑅2            (2.28) 

           

NUMERICAL RESULTS AND DISCUSSION: 

It is vital to assess the analytical results produced for dimensionless shear stress to flow(τ) in order 

to have an assessment of the quantitative impact of the different characteristics included in the 

analysis. It is based on area-axial average velocity of flow of H-B fluid model on constant tube 

diameter, where the constitutive co-efficient m=0.1260 g/cm .s in Power law fluid model (Razavi, 

et al., 2006). The value of the power law index ’n’ for blood flow problems are generally taken to 

lie between 0.9 and 1.1 (Sankar, & Lee, 2009) and in this analysis, we have used the value 0.95 

for n < 1 and 1.05 for n > 1. u=(0.5,2.5,4.5,6.5,8.5),  =(0.1,0.2,0.3,0.4,0.5), =0.05 then k=3 ,and  

when =0.10 then k=4, because viscosity of blood at 370 C is (3-4) × Pa.S.  (Sankar, 2010). 

  

 
 

 

As the stenosis height increases, the shear stress increases for any set of values of the axial velocity 

(u). As u increases, the shear stress decreases sharply for any fixed value of
0R



 

.Figure 2 exhibits 
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the results for shear stress with stenosis height for different values of axial velocity u for 
H =0.05 

and n = 0.95 (< 1). For higher values of u the trend is almost linear. The result is physically 

significant because stenosis height will enhance shear stress in the stenotic region. The increase 

of axial velocity in the stenotic region will naturally assume lower magnitude for higher stenosis 

height. The result is consistent with the observation of (Verma et. al., 2011). Figure 3 and Figure 

4 exhibits the higher values of n and H of steaming blood and stenosis height with average axial 

velocity (when n=1.05). Using the experimental data that is currently accessible, the pertinent 

computational work has been carried out for some specific scenarios in order to determine the 

quantitative effects of the various factors involved in this investigation. By using the non-

Newtonian (Casson fluid model) for blood, this numerical calculation aims to highlight the 

impacts of periodic body acceleration, slip velocity, and stenotic height on the pulsatile flow of 

blood via stenosed arteries. On using perturbation method, the velocity u is expanded in terms of 

the Womersley frequency parameter α2 (where α2<<1) (Womersley, 1955). The assumption of the 

small value of α is valid for physiological situations in small blood vessels. In most of the earlier 

investigations, the boundary condition is no-slip condition (velocity continuity). In this 

investigation two values of slip velocity us = 0(no slip) and us = 0.05 are taken. As velocity profiles 

play an important role in the flow field so the results for the axial velocity profiles of the streaming 

blood are studied under slip (us = 0.05) and no slip condition (us = 0) and body acceleration 

parameter B = 0, 1, 2. Fig.6 and Fig.7 illustrates that the axial velocity increase with radial distance 

and attains its maximum value at the axis (r = 0) and the minimum at the boundary (r = R (z)). In 

the presence of body acceleration, velocity increases rapidly. As the body acceleration increases, 

the plug region shrinks so more flow takes place. Fig.8 illustrates that the axial velocity increase 

with radial distance and attains its maximum value at the axis (r = 0) and the minimum at the 

boundary (r = R (z)). It also shows the variations of the axial velocity with B, 𝛿 and 𝜃.Fig.9, Fig.10 

and Fig.11 illustrates that the axial velocity increase with radial distance and attains its maximum 

value at the axis (r = 0) and the minimum at the boundary (r = R (z)). The axial velocity increases 

with the decrease in 𝛿, the maximum height of the stenosis.
 

 

Figure 3.6 Axial velocity increase with radial distance at r=0 
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Figure 3.7 Axial velocity increase with radial distance at r=R(z) 

  
 

Figure 3.8. variations of the axial velocity with B and 𝜃 

 

Figure 3.9. variations of the axial velocity with 𝛿  
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Figure 3.10. Axial velocity increase with radial distance and attains its maximum value at the axis 

(r = 0) 

 

Figure 3.11 Axial velocity increase with radial distance and attains its minimum at the boundary (r 

= R (z)) 

 

CONCLUSION 

The flow of blood through narrow stenosed arterial segments with periodic body acceleration has 

been studied in this analysis, treating blood as a Casson fluid model and flow of blood with 

multiple stenoses have been studied by modeling blood as a Herschel – Bulkley fluid. The 

numerical simulation shows that the rheological parameters, height of stenosis and yield stress of 

the fluid strongly influence the flow characteristics qualitatively and quantitatively. It is also 

observed in the present investigation that the body acceleration parameter, radius of stenosis, the 

slip velocity and the Casson fluid parameters are the strong parameters influencing the flow with 
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due consideration of axial velocity slip at the constricted wall. So, this study is more useful for the 

purpose of simulation and validation of different models in different conditions of arteriosclerosis. 

The presence of body acceleration is to increase the flow rate but reduce the flow resistance. It is 

interesting to note that the model developed in the paper will throw light on the influence of 

various parameters on flow characteristics and to ascertain which of the parameters has the most 

dominating role. 

Also, it is hoped that the analytical study will help the physicians in estimating the severity of 

stenosis and its consequence. Thus, the models developed in this paper will throw light on the 

clinical treatment of the obstruction of fluid movement due to formulation of multiple stenoses in 

the arterial system and may reduce some of the major complications for the development of 

ischemia and coronary thrombosis. 
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